
Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Today
Demo
Polymorphism with Controllers in Matchismo
How to change the class of a Controller in a storyboard

Multiple MVCs in an Application
UINavigationController
UITabBarController

Demo
Attributor Stats

Stanford CS193p
Fall 2013

Demo
Making a Generic Controller in Matchismo
Polymorphism with Controllers in Matchismo
Get rid of PlayingCardDeck in CardGameViewController.
How to change the class of a Controller in a storyboard

Stanford CS193p
Fall 2013

Multiple MVCs
Why?
When your application gets more features than can fit in one MVC.

How to add a new MVC to your storyboard
Drag “View Controller” from Object Palette.
Create a subclass of UIViewController using New File menu item.
Set that subclass as the class of your new Controller in the Attributes Inspector.

How to present this new MVC to the user
UINavigationController
UITabBarController
Other mechanisms we’ll talk about later in the course (popover, modal, etc.).

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

This is the UINavigationController’s View.

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

This is a Month MVC’s View.
This is the UINavigationController’s View.

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

This is a Day MVC’s View.

Stanford CS193p
Fall 2013

This is a Calendar Event MVC’s View.

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Navigation Bar (contents determined by embedded MVC’s navigationItem).
Components of a UINavigationController

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Navigation Bar (contents determined by embedded MVC’s navigationItem).
 Title (by default is title property of the embedded MVC)

Components of a UINavigationController

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Navigation Bar (contents determined by embedded MVC’s navigationItem).
 Title (by default is title property of the embedded MVC)
 Embedded MVC’s navigationItem.rightBarButtonItems
 (an NSArray of UIBarButtonItems)

Components of a UINavigationController

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Navigation Bar (contents determined by embedded MVC’s navigationItem).
 Title (by default is title property of the embedded MVC)
 Embedded MVC’s navigationItem.rightBarButtonItems
 (an NSArray of UIBarButtonItems)
 Back Button (automatic)

Components of a UINavigationController

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Components of a UINavigationController
Navigation Bar (contents determined by embedded MVC’s navigationItem).
 Title (by default is title property of the embedded MVC)
 Embedded MVC’s navigationItem.rightBarButtonItems
 (an NSArray of UIBarButtonItems)
 Back Button (automatic)

Stanford CS193p
Fall 2013

UINavigationController
When to use it?
When the user wants to “dive down” into more detail.

How does it work?
Encloses other MVCs (like the Year MVC and the Month MVC).
Touches in one MVC “segue” to the other MVCs.

Components of a UINavigationController
Navigation Bar (contents determined by embedded MVC’s navigationItem).
 Title (by default is title property of the embedded MVC)
 Embedded MVC’s navigationItem.rightBarButtonItems
 (an NSArray of UIBarButtonItems)
 Back Button (automatic)
Embedded MVC’s toolbarItems property
 (also an NSArray of UIBarButtonItems)

Stanford CS193p
Fall 2013

MVCs working together

I want more features, but it doesn’t make
sense to put them all in one MVC!

Stanford CS193p
Fall 2013

MVCs working together

So I create a new MVC to
encapsulate that functionality.

Stanford CS193p
Fall 2013

MVCs working together
If the relationship between these two MVCs is

“more detail,” we use a UINavigationController
to let them share the screen.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together
The UINavigationController is a

Controller whose View looks like this.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

rootViewController
But it’s special because we can set its

rootViewController outlet to another MVC ...

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together
... and it will embed that MVC’s

View inside its own View.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

Then a UI element in this View (e.g. a UIButton) can segue to the other
MVC and its View will now appear in the UINavigationController instead.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

We call this kind of segue
a “push segue”.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

Notice this Back button
automatically appears.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

When we click it, we’ll
go back to the first MVC.

Stanford CS193p
Fall 2013

UINavigationController

MVCs working together

Stanford CS193p
Fall 2013

Segues
Let’s talk about how the segue gets set up first
Then we’ll look at how we create a UINavigationController in our storyboard.

Stanford CS193p
Fall 2013

So far, you’ve only had a single MVC in
your application.

So how do you create a second one?

It’s a two-step process.
First, drag a View Controller

into your Storyboard ...

Stanford CS193p
Fall 2013

... second, set its class.
This is almost always a class

that you create using
File > New > File ...

Don’t forget that it has to be
a subclass of

UIViewController.

Note

It is a VERY common mistake
to forget this step!

If you do, you’ll wonder why you
can’t hook up any outlets or

actions inside this MVC!

Stanford CS193p
Fall 2013

We call a
particular layout of

a View for a
Controller in Xcode

a “scene”.

This is
a scene.

This is
a scene.

Stanford CS193p
Fall 2013

Let’s drag out a
Button that,

when pressed,
will show this new
View Controller.

Stanford CS193p
Fall 2013

Drop it here.

Stanford CS193p
Fall 2013

To create a segue, you hold down ctrl and drag
from a button (or other UI element) in

one View Controller to another View Controller.

Stanford CS193p
Fall 2013

“Push” is the kind of segue you use when the two
Controllers are inside a UINavigationController.

When you let go of the mouse, Xcode will ask what
sort of segue you want to occur when Button is pressed.

Stanford CS193p
Fall 2013

This segue will be created.

Stanford CS193p
Fall 2013

This is the identifier for this segue (“Do Something” in this case).
We will use it in our code to identify this segue.

Obviously multiple UI elements could be segueing to multiple other VCs
(so we need to be able to tell which segue is happening with this identifier).

The segue can be inspected
by clicking on it

and bringing up the
Attributes Inspector.

Stanford CS193p
Fall 2013

But there’s a problem here.
These View Controllers are not inside a UINavigationController.

Push will do nothing.

Stanford CS193p
Fall 2013

You can embed a
View Controller in a

UINavigationController by
selecting the View Controller,

then choosing
Embed In > Navigation Controller

from the Editor menu.

You select the “root”
(top level)

View Controller
before embedding.

Stanford CS193p
Fall 2013

This little arrow is the
application starting point.

Note that it was preserved
when we embedded.

This arrow can be moved, but don’t point it at an
MVC that is inside a UINavigationController.

Stanford CS193p
Fall 2013

This is not a segue, it’s the
rootViewController outlet

of the UINavigationController.

Stanford CS193p
Fall 2013

This is the segue we built
by ctrl-dragging earlier.

Stanford CS193p
Fall 2013

Notice that navigation bars were
added on top of all the scenes when

they became embedded.
These are part of the

UINavigationController’s View.

Stanford CS193p
Fall 2013

You can double-click
to edit this title. Or it will default to the

title property of the
View Controller (if set).

Stanford CS193p
Fall 2013

If you want to add a button
to this bar, you can, but
don’t use UIButton ...

Stanford CS193p
Fall 2013

... scroll down to
UIBarButtonItem instead.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

This button is now associated with this
View Controller in this scene and will be
displayed when this View Controller is the

currently-showing scene in the
UINavigationController.

Stanford CS193p
Fall 2013

UINavigationController
When does a pushed MVC pop off?
Usually because the user presses the “back” button (shown on the previous slide).
But it can happen programmatically as well with this UINavigationController instance method
- (void)popViewControllerAnimated:(BOOL)animated;
This does the same thing as clicking the back button.
Somewhat rare to call this method. Usually we want the user in control of navigating the stack.
But you might do it if some action the user takes in a view makes it irrelevant to be on screen.

Example
Let’s say we push an MVC which displays a database record and has a delete button w/this action:
- (IBAction)deleteCurrentRecord:(UIButton *)sender
{
 // delete the record we are displaying
 // we just deleted the record we are displaying!
 // so it does not make sense to be on screen anymore, so pop
 [self.navigationController popViewControllerAnimated:YES];
}

Notice that all UIViewControllers know the
UINavigationController they are in.

This is nil if they are not in one.

Stanford CS193p
Fall 2013

View Controller
Other kinds of segues besides Push
Replace - Replaces the right-hand side of a UISplitViewController (iPad only)
Popover - Puts the view controller on the screen in a popover (iPad only)
Modal - Puts the view controller up in a way that blocks the app until it is dismissed
Custom - You can create your own subclasses of UIStoryboardSegue

We’ll talk about iPad-related segues in future lectures
Replace & Popover

We’ll talk about Modal segues later in the quarter too
People often use Modal UIs as a crutch, so we don’t want to go to that too early.

Stanford CS193p
Fall 2013

View Controller
Firing off a segue from code
Sometimes it makes sense to segue directly when a button is touched, but not always.
For example, what if you want to conditionally segue?
You can programmatically invoke segues using this method in UIViewController:
- (void)performSegueWithIdentifier:(NSString *)segueId sender:(id)sender;
The segueId is set in the attributes inspector in Xcode (seen on previous slide).
The sender is the initiator of the segue (a UIButton or yourself (UIViewController) usually).
- (IBAction)rentEquipment
{
 if (self.snowTraversingTalent == Skiing) {
 [self performSegueWithIdentifier:@“AskAboutSkis” sender:self];
 } else {
 [self performSegueWithIdentifier:@“AskAboutSnowboard” sender:self];
 }
}

Stanford CS193p
Fall 2013

Segues
When a segue happens, what goes on in my code?
The segue offers the source VC the opportunity to “prepare” the new VC to come on screen.
This method is sent to the VC that contains the button that initiated the segue:
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if ([segue.identifier isEqualToString:@“DoSomething”]) {
 if ([segue.destinationViewController isKindOfClass:[DoSomethingVC class]]) {
 DoSomethingVC *doVC = (DoSomethingVC *)segue.destinationViewController;
 doVC.neededInfo = ...;
 }
 }
}

You should pass data the new VC needs here and “let it run.”
Think of the new VC as part of the View of the Controller that initiates the segue.
It must play by the same rules as a View.
For example, it should not talk back to you (except through blind communication like delegation).

Stanford CS193p
Fall 2013

Segues
You can prevent a segue from happening
Your Controller usually just always segues.
But if you respond NO to this method, it would prevent the identified segue from happening.
- (BOOL)shouldPerformSegueWithIdentifier:(NSString *)identifier sender:(id)sender
{
 if ([segue.identifier isEqualToString:@“DoAParticularThing”]) {
 return [self canDoAParticularThing] ? YES : NO;
 }
}
Do not create “dead UI” with this (e.g. buttons that do nothing).
This is a very rare method to ever implement.

Stanford CS193p
Fall 2013

Unwinding
There are also ways to unwind from a series of segues
Some people think of this as “reverse segueing”.
Used if you want to dismiss the VC you are in and go back to a previous VC that segued to you.
For example, what if you wanted to pop back multiple levels in a navigation controller?
 (if you were only going back one level, you could just use popViewControllerAnimated:).
The little green button in the black bar at the bottom of a scene can be used to wire that up.
We will probably cover this when we talk about the Modal segue type (i.e. later).
You need to master segueing forward before you start thinking about going backward!

This is the “little green button.”

Stanford CS193p
Fall 2013

Instantiating a UIViewController by name from a storyboard
Sometimes (very rarely) you might want to put a VC on screen yourself (i.e., not use a segue).
NSString *vcid = @“something”;
UIViewController *controller = [storyboard instantiateViewControllerWithIdentifier:vcid];
Usually you get the storyboard above from self.storyboard in an existing UIViewController.
The identifier vcid must match a string you set in Xcode to identify a UIViewController there.

View Controller

This UIViewController in the storyboard can be
instantiated using the identifier “hellothere”.

Stanford CS193p
Fall 2013

Instantiating a UIViewController by name from a storyboard
Sometimes (very rarely) you might want to put a VC on screen yourself (i.e., not use a segue).
NSString *vcid = @“something”;
UIViewController *controller = [storyboard instantiateViewControllerWithIdentifier:vcid];
Usually you get the storyboard above from self.storyboard in an existing UIViewController.
The identifier vcid must match a string you set in Xcode to identify a UIViewController there.

Example: creating a UIViewController in a target/action method
Lay out the View for a DoitViewController in your storyboard and name it “doit1”.
- (IBAction)doit
{
 DoitViewController *doit =
 [self.storyboard instantiateViewControllerWithIdentifier:@”doit1”];
 doit.infoDoitNeeds = self.info;
 [self.navigationController pushViewController:doit animated:YES];
}

View Controller

Note use of self.navigationController again.

Stanford CS193p
Fall 2013

Demo
Attributor Stats
Use a UINavigationController to show “statistics” on colors and outlining in Attributor.

Stanford CS193p
Fall 2013

UITabBarController

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

You control drag to
create these

connections in Xcode.

Doing so is setting
@property (nonatomic, strong) NSArray *viewControllers;

inside your UITabBarController.

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

But usually you set
both of these in your
storyboard in Xcode.

By default this is
the UIViewController’s

title property
(and no image)

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

What if there are
more than 4 View

Controllers?

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

A More button appears.

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

A More button appears.

More button brings up a
UI to let the user edit
which buttons appear

on bottom row

Stanford CS193p
Fall 2013

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

All Happens Automatically

Stanford CS193p
Fall 2013

You create a Tab Bar Controller by
dragging it from the object palette.

Stanford CS193p
Fall 2013

You can drag it anywhere.
After you drop it, you can

reposition everything.

Stanford CS193p
Fall 2013

If things are a mess, you can
double-click on the background

of a storyboard to make
everything smaller.

Or click here.

Stanford CS193p
Fall 2013

You can arrange the scenes in your
storyboard any way you want.

Stanford CS193p
Fall 2013

When you drag a Tab Bar Controller into your
storyboard, it comes with two “prefabbed” tabs.

Often you don’t want them.

Just click on an undesired scene’s black bar ...

Stanford CS193p
Fall 2013

... and hit delete.

Stanford CS193p
Fall 2013

In the same way as a UINavigationController, a
UITabBarController is itself the Controller of an MVC.

It’s View consists of other MVCs.

Stanford CS193p
Fall 2013

And just like UINavigationController,
just ctrl-drag to wire up your

UITabBarController’s View MVCs.

Stanford CS193p
Fall 2013

This segue is called a Relationship Segue.
This is the only segue we’ll ever use with a Tab Bar Controller.

You will always pick “view controllers” from the bottom of this list.
By doing so, you are adding the MVC to which you are dragging to

an NSArray @property called viewControllers in the
UITabBarController that you are dragging from.

Stanford CS193p
Fall 2013

Here is the Relationship Segue.
You don’t need to set an identifier on it.

Another
Relationship

Segue.

Stanford CS193p
Fall 2013

Note that room has been made at the
bottom of each scene for the tab bar.
This might cover up some of your UI

and require some repositioning.

Stanford CS193p
Fall 2013

Here we have
UINavigationController INSIDE a

UITabBarController.
Perfectly legal (the opposite is not).

Stanford CS193p
Fall 2013

The MVC at launch is still set to the
UINavigationController.

It needs to be the UITabBarController.
Just drag this arrow ...

Stanford CS193p
Fall 2013

... over near the
UITabBarController MVC ...

Stanford CS193p
Fall 2013

... and drop it
(it will snap onto the
UITabBarController).

Stanford CS193p
Fall 2013

The name of each tab can be
edited directly in Xcode.

Stanford CS193p
Fall 2013

The icon for the tab can also be set in Xcode
(using images from the asset library).

Tab Bar icons are 30x30, alpha channel only.

Stanford CS193p
Fall 2013

Coming Up
Friday
No Section

Next couple of weeks ...
Drawing in your own custom View class
Gestures
Autolayout
Animation

No Lecture next Monday!

Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Today
Views
How to draw custom stuff on screen.

Gestures
How to react to user’s touch gestures.

Demo
SuperCard

Stanford CS193p
Fall 2013

Views
A view (i.e. UIView subclass) represents a rectangular area
Defines a coordinate space

Draws and handles events in that rectangle
Hierarchical
A view has only one superview - (UIView *)superview
But can have many (or zero) subviews - (NSArray *)subviews
Subview order (in subviews array) matters: those later in the array are on top of those earlier
A view can clip its subviews to its bounds or not (switch for this in Xcode, or method in UIView).

UIWindow
The UIView at the top of the view hierarchy
Only have one UIWindow (generally) in an iOS application
It’s all about views, not windows

Stanford CS193p
Fall 2013

Views
The hierarchy is most often constructed in Xcode graphically
Even custom views are often added to the view hierarchy using Xcode (more on this later).

But it can be done in code as well
- (void)addSubview:(UIView *)aView; // sent to aView’s (soon to be) superview
- (void)removeFromSuperview; // sent to the view that is being removed

The top of this hierarchy for your MVC is the @property view!
UIViewController’s @property (strong, nonatomic) UIView *view
It is critical to understand what this very simple @property is!
This is the view whose bounds will be changed when autorotation happens, for example.
This is the view you would programmatically add subviews to.
All your MVC’s View’s UIView’s eventually have this view as their parent (it’s at the top).
It is automatically hooked up for you when you drag out a View Controller in Xcode.

Stanford CS193p
Fall 2013

Initializing a UIView
Yes, you might want to override UIView’s designated initializer
More common than overriding UIViewController’s designated initializer (but still rare).

But you will also want to set up stuff in awakeFromNib
This is because initWithFrame: is NOT called for a UIView coming out of a storyboard!
But awakeFromNib is. Same as we talked about with UIViewController.
It’s called “awakeFromNib” for historical reasons.

Typical code ...
- (void)setup { ... }
- (void)awakeFromNib { [self setup]; }
- (id)initWithFrame:(CGRect)aRect
{
 self = [super initWithFrame:aRect];
 [self setup];
 return self;
}

Stanford CS193p
Fall 2013

View Coordinates
CGFloat
Just a floating point number (depends on 64-bit or not), but we always use it for graphics.

CGPoint
C struct with two CGFloats in it: x and y.
CGPoint p = CGPointMake(34.5, 22.0);
p.x += 20; // move right by 20 points

CGSize
C struct with two CGFloats in it: width and height.
CGSize s = CGSizeMake(100.0, 200.0);
s.height += 50; // make the size 50 points taller

CGRect
C struct with a CGPoint origin and a CGSize size.
CGRect aRect = CGRectMake(45.0, 75.5, 300, 500);
aRect.size.height += 45; // make the rectangle 45 points taller
aRect.origin.x += 30; // move the rectangle to the right 30 points

Stanford CS193p
Fall 2013

(0,0) increasing x

increasing y

Coordinates
Origin of a view’s coordinate system is upper left
Units are “points” (not pixels)
Usually you don’t care about how many pixels per point are on the screen you’re drawing on.
Fonts and arcs and such automatically adjust to use higher resolution.
However, if you are drawing something detailed (like a graph), you might want to know.
There is a UIView property which will tell you:
@property CGFloat contentScaleFactor; // returns pixels per point on the screen this view is on.
This property is not readonly, but you should basically pretend that it is for this course.

Views have 3 properties related to their location and size
@property CGRect bounds; // your view’s internal drawing space’s origin and size
The bounds property is what you use inside your view’s own implementation.
It is up to your implementation as to how to interpret the meaning of bounds.origin.
@property CGPoint center; // the center of your view in your superview’s coordinate space
@property CGRect frame; // a rectangle in your superview’s coordinate space which entirely
 // contains your view’s bounds.size

(400, 35)

Stanford CS193p
Fall 2013

Coordinates
Use frame and center to position the view in the hierarchy
These are used by superviews, never inside your UIView subclass’s implementation.
You might think frame.size is always equal to bounds.size, but you’d be wrong ...

View A

View B

300, 225 200250
0, 0

320

320

140, 65

View B’s bounds = ((0,0),(200,250))
View B’s frame = ((140,65),(320,320))
View B’s center = (300,225)

View B’s middle in its own coordinate space is
(bound.size.width/2+bounds.origin.x,
 bounds.size.height/2+bounds.origin.y)
which is (100,125) in this case.

Because views can be rotated
(and scaled and translated too).

Views are rarely rotated, but don’t
misuse frame or center by assuming that.

Stanford CS193p
Fall 2013

Creating Views
Most often you create views in Xcode
Of course, Xcode’s palette knows nothing about a custom view class you might create.
So you drag out a generic UIView from the palette and use the Identity Inspector
 to change the class of the UIView to your custom class (demo of this later).

How do you create a UIView in code (i.e. not in Xcode)?
Just use alloc and initWithFrame: (UIView’s designated initializer).
Can also use init (frame will be CGRectZero).

Example
CGRect labelRect = CGRectMake(20, 20, 50, 30);
UILabel *label = [[UILabel alloc] initWithFrame:labelRect];
label.text = @”Hello!”;
[self.view addSubview:label]; // Note self.view!

Stanford CS193p
Fall 2013

Custom Views
When would I want to create my own UIView subclass?
I want to do some custom drawing on screen.
I need to handle touch events in a special way (i.e. different than a button or slider does)
We’ll talk about handling touch events in a bit. First we’ll focus on drawing.

Drawing is easy ... create a UIView subclass & override 1 method
- (void)drawRect:(CGRect)aRect;
You can optimize by not drawing outside of aRect if you want (but not required).

NEVER call drawRect:!! EVER! Or else!
Instead, let iOS know that your view’s visual is out of date with one of these UIView methods:
- (void)setNeedsDisplay;
- (void)setNeedsDisplayInRect:(CGRect)aRect;
It will then set everything up and call drawRect: for you at an appropriate time.
Obviously, the second version will call your drawRect: with only rectangles that need updates.

Stanford CS193p
Fall 2013

Custom Views
So how do I implement my drawRect:?
Use the Core Graphics framework directly (a C API, not object-oriented).
Or we can use the object-oriented UIBezierPath class (we’ll do it this way).

Core Graphics Concepts
Get a context to draw into (iOS will prepare one each time your drawRect: is called)
Create paths (out of lines, arcs, etc.)
Set colors, fonts, textures, linewidths, linecaps, etc.
Stroke or fill the above-created paths

 UIBezierPath
Do all of the above, but capture it with an object.
Then ask the object to stroke or fill what you’ve created.

Stanford CS193p
Fall 2013

Context
The context determines where your drawing goes
Screen (the only one we’re going to talk about today)
Offscreen Bitmap
PDF
Printer

For normal drawing, UIKit sets up the current context for you
But it is only valid during that particular call to drawRect:.
A new one is set up for you each time drawRect: is called.
So never cache the current graphics context in drawRect: to use later!

How to get this magic context?
UIBezierPath draws into the current context, so you don’t need to get it if using that.
But if you’re calling Core Graphics C functions directly, you’ll need it (it’s an argument to them).
Call the following C function inside your drawRect: method to get the current graphics context ...
CGContextRef context = UIGraphicsGetCurrentContext();

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

[path moveToPoint:CGPointMake(75, 10)];

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

[[UIColor greenColor] setFill];
[[UIColor redColor] setStroke];

Stanford CS193p
Fall 2013

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

[path fill]; [path stroke];

[[UIColor greenColor] setFill];
[[UIColor redColor] setStroke];

Stanford CS193p
Fall 2013

Graphics State
Can also set graphics state
e.g. path.lineWidth = 2.0; // line width in points (not pixels)

And draw rounded rects, ovals, etc.
UIBezierPath *roundedRect = [UIBezierPath bezierPathWithRoundedRect:(CGRect)bounds
 cornerRadius:(CGFloat)radius];

Note: the “casts” in the arguments are just to let you know the types (i.e. they’re not required).
UIBezierPath *oval = [UIBezierPath bezierPathWithOvalInRect:(CGRect)bounds];
[roundedRect stroke];
[oval fill];

You can use a UIBezierPath to “clip” your drawing
[roundedRect addClip]; // this would clip all drawing to be inside the roundedRect

Stanford CS193p
Fall 2013

Graphics State
Drawing with transparency in UIView
You know that UIColors can have alpha.
This is how you can draw with transparency in your drawRect:.

UIView also has a backgroundColor property which can be set to transparent values.

Be sure to set @property BOOL opaque to NO in a view which is partially transparent.
If you don’t, results are unpredictable (this is a performance optimization property, by the way).

UIView‘s @property CGFloat alpha can make the entire view partially transparent.
 (you might use this to your advantage in your homework to show a “disabled” custom view)

Stanford CS193p
Fall 2013

View Transparency
What happens when views overlap?
As mentioned before, subviews list order determine’s who’s in front
Lower ones (earlier in subviews array) can “show through” transparent views on top of them

Default drawing is opaque
Transparency is not cheap (performance-wise)

Also, you can hide a view completely by setting hidden property
@property (nonatomic) BOOL hidden;
myView.hidden = YES; // view will not be on screen and will not handle events
This is not as uncommon as you might think
On a small screen, keeping it de-cluttered by hiding currently unusable views make sense.
Also this can be used to swap two (or more) views in and out depending on state.

Stanford CS193p
Fall 2013

Graphics State
Special considerations for defining drawing “subroutines”
What if you wanted to have a utility method that draws something?
You don’t want that utility method to mess up the graphics state of the calling method.
Use save and restore context functions.

- (void)drawRect:(CGRect)aRect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 [[UIColor redColor] setFill];
 // do some stuff
 [self drawGreenCircle:context];
 // do more stuff and expect fill color to be red
}

- (void)drawGreenCircle:(CGContextRef)ctxt {
 CGContextSaveGState(ctxt);
 [[UIColor greenColor] setFill];
 // draw my circle
 CGContextRestoreGState(ctxt);
}

Stanford CS193p
Fall 2013

Drawing Text
We can use a UILabel as a subview to draw text in our view
But there are certainly occasions where we want to draw text in our drawRect:.

To draw in drawRect:, use NSAttributedString
NSAttributedString *text = ...;
[text drawAtPoint:(CGPoint)p]; // NSAttributedString instance method added by UIKit

How much space will a piece of text will take up when drawn?
CGSize textSize = [text size]; // another UIKit NSAttributedString instance method

You might be disturbed that there are drawing methods in Foundation (a non-UI framework!).
These NSAttributedString methods are defined in UIKit via a mechanism called categories.
 (so are the names of the attributes that define UI stuff (e.g. NSFontAttributeName)).
Categories are an Objective-C way to add methods to an existing class without subclassing.
We’ll cover how (and when) to use this a bit later in this course.

Stanford CS193p
Fall 2013

Drawing Images
UIImageView is like UILabel for images
But again, occasionally you want to draw an image in your drawRect:.

Create a UIImage object from a file in your Resources folder
UIImage *image = [UIImage imageNamed:@“foo.jpg”]; // you did this in Matchismo

Or create one from a named file or from raw data
(of course, we haven’t talked about the file system yet, but ...)
UIImage *image = [[UIImage alloc] initWithContentsOfFile:(NSString *)fullPath];
UIImage *image = [[UIImage alloc] initWithData:(NSData *)imageData];

Or you can even create one by drawing with CGContext functions
UIGraphicsBeginImageContext(CGSize);
// draw with CGContext functions
UIImage *myImage = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

Stanford CS193p
Fall 2013

Drawing Images
Now blast the UIImage’s bits into the current graphics context
UIImage *image = ...;
[image drawAtPoint:(CGPoint)p]; // p is upper left corner of the image
[image drawInRect:(CGRect)r]; // scales the image to fit in r
[image drawAsPatternInRect:(CGRect)patRect; // tiles the image into patRect

Aside: You can get a PNG or JPG data representation of UIImage
NSData *jpgData = UIImageJPEGRepresentation((UIImage *)myImage, (CGFloat)quality);
NSData *pngData = UIImagePNGRepresentation((UIImage *)myImage);

Stanford CS193p
Fall 2013

Redraw on bounds change?
By default, when your UIView’s bounds change, there is no redraw
Instead, the “bits” of your view will be stretched or squished or moved.

Often this is not what you want ...
Luckily, there is a UIView @property to control this! It can be set in Xcode.
@property (nonatomic) UIViewContentMode contentMode;

These content modes move the bits of your drawing to that location ...
UIViewContentMode{Left,Right,Top,Right,BottomLeft,BottomRight,TopLeft,TopRight}
These content modes stretch the bits of your drawing ...
UIViewContentModeScale{ToFill,AspectFill,AspectFit} // bit stretching/shrinking
This content mode calls drawRect: to redraw everything when the bounds changes ...
UIViewContentModeRedraw // it is quite often that this is what you want

Default is UIViewContentModeScaleToFill (stretch the bits to fill the bounds)

Stanford CS193p
Fall 2013

UIGestureRecognizer
We’ve seen how to draw in our UIView, how do we get touches?
We can get notified of the raw touch events (touch down, moved, up).
Or we can react to certain, predefined “gestures.” This latter is the way to go.

Gestures are recognized by the class UIGestureRecognizer
This class is “abstract.” We only actually use “concrete subclasses” of it.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView to ask it to recognize that gesture.
2. Providing the implementation of a method to “handle” that gesture when it happens.

Usually #1 is done by a Controller
Though occasionally a UIView will do it to itself if it just doesn’t make sense without that gesture.

Usually #2 is provided by the UIView itself
But it would not be unreasonable for the Controller to do it.
Or for the Controller to decide it wants to handle a gesture differently than the view does.

Stanford CS193p
Fall 2013

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

This is a concrete subclass of UIGestureRecognizer that recognizes
“panning” (moving something around with your finger).

There are, of course, other concrete subclasses (for swipe, pinch, tap, etc.).

Stanford CS193p
Fall 2013

Note that we are specifying the view itself as the target to handle a pan gesture when it is recognized.
Thus the view will be both the recognizer and the handler of the gesture.

The UIView does not have to handle the gesture. It could be, for example, the Controller that handles it.
The View would generally handle gestures to modify how the View is drawn.

The Controller would have to handle gestures that modified the Model.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

Stanford CS193p
Fall 2013

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

This is the action method that will be sent to the target
(the pannableView) during the handling of the recognition of this gesture.

This version of the action message takes one argument
(which is the UIGestureRecognizer that sends the action),

but there is another version that takes no arguments if you’d prefer.

We’ll look at the implementation of this method in a moment.

Stanford CS193p
Fall 2013

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

If we don’t do this, then even though the pannableView
implements pan:, it would never get called because we
would have never added this gesture recognizer to the

view’s list of gestures that it recognizes.

Think of this as “turning the handling of this gesture on.”

Stanford CS193p
Fall 2013

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

Only UIView instances can recognize a gesture (because UIViews handle all touch input).
But any object can tell a UIView to recognize a gesture (by adding a recognizer to the UIView).
And any object can handle the recognition of a gesture (by being the target of the gesture’s action).

Stanford CS193p
Fall 2013

UIGestureRecognizer
How do we implement the target of a gesture recognizer?
Each concrete class provides some methods to help you do that.

For example, UIPanGestureRecognizer provides 3 methods:
- (CGPoint)translationInView:(UIView *)aView;
- (CGPoint)velocityInView:(UIView *)aView;
- (void)setTranslation:(CGPoint)translation inView:(UIView *)aView;

Also, the base class, UIGestureRecognizer provides this @property:
@property (readonly) UIGestureRecognizerState state;
Gesture Recognizers sit around in the state Possible until they start to be recognized
Then they either go to Recognized (for discrete gestures like a tap)
Or they go to Began (for continuous gestures like a pan)
At any time, the state can change to Failed (so watch out for that)
If the gesture is continuous, it’ll move on to the Changed and eventually the Ended state
Continuous can also go to Cancelled state (if the recognizer realizes it’s not this gesture after all)

Stanford CS193p
Fall 2013

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||
 (recognizer.state == UIGestureRecognizerStateEnded)) {

}
}

We’re going to update our view
every time the touch moves
(and when the touch ends).
This is “smooth panning.”

Stanford CS193p
Fall 2013

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||
 (recognizer.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];

}
}

This is the cumulative distance this gesture has moved.

Stanford CS193p
Fall 2013

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||
 (recognizer.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);

}
}

Stanford CS193p
Fall 2013

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||
 (recognizer.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
 [recognizer setTranslation:CGPointZero inView:self];

Here we are resetting the cumulative distance to zero.

Now each time this is called, we’ll get the “incremental” movement of
the gesture (which is what we want). If we wanted the “cumulative”

movement of the gesture, we would not include this line of code.

}
}

Stanford CS193p
Fall 2013

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||
 (recognizer.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
 [recognizer setTranslation:CGPointZero inView:self];

}
}

Stanford CS193p
Fall 2013

Other Concrete Gestures
UIPinchGestureRecognizer
@property CGFloat scale; // note that this is not readonly (can reset each movement)
@property (readonly) CGFloat velocity; // note that this is readonly; scale factor per second

UIRotationGestureRecognizer
@property CGFloat rotation; // not readonly; in radians
@property (readonly) CGFloat velocity; // readonly; radians per second

UISwipeGestureRecognizer
This one you “set up” (w/the following) to find certain swipe types, then look for Recognized state
@property UISwipeGestureRecognizerDirection direction; // what direction swipes you want
@property NSUInteger numberOfTouchesRequired; // two finger swipes? or just one finger? more?

UITapGestureRecognizer
Set up (w/the following) then look for Recognized state
@property NSUInteger numberOfTapsRequired; // single tap or double tap or triple tap, etc.
@property NSUInteger numberOfTouchesRequired; // e.g., require two finger tap?

Stanford CS193p
Fall 2013

Demo
SuperCard
Let’s make a lot better-looking playing card!

What to watch for ...
Custom UIView with its own drawRect:
setNeedsDisplay
UIBezierPath
Clipping
Pushing and popping graphics context
Drawing text with NSAttributedString and images with UIImage
Document Outline and Size Inspector in Xcode
Gestures recognizers hooked up in Xcode vs. programmatically
Controller vs. View as gesture handler

Stanford CS193p
Fall 2013

Coming Up
Friday
Running on your device with the University Developer Program (Stanford Only).

Homework
Due a week from Monday.
Get started on first few Required Tasks immediately (i.e. replacing button with custom UIView).

Next Week
Animation
Autolayout

Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Today
Protocols
How to make id a little bit safer.

Blocks
Passing a block of code as an argument to a method.

Animation
Dynamic Animator
View property animation

Demo
Dropit!

Stanford CS193p
Fall 2013

Protocols
The problem with id ...
Obviously it’s hard to communicate your intent with id.
What do you want callers of this method to pass (or what are you returning) exactly?

Introspection
Helps occasionally, but not a “primary programming methodology.”
And it doesn’t help with communicating your intent at all (it’s more of a runtime thing).

Protocols
A syntactical modification of id, for example, id <MyProtocol> obj.
MyProtocol would then be defined to be a list of methods (including @propertys).
The variable obj now can point to an object of any class, but that it implements known methods.
Not all the methods in a protocol have to be required, but still, you’ll know what’s expected.
Let’s look at the syntax ...

Stanford CS193p
Fall 2013

Protocols
Declaring a @protocol
Looks a lot like @interface (but there’s no corresponding @implementation)
@protocol Foo
- (void)someMethod;

@property (readonly) int readonlyProperty; // getter (only) is part of this protocol
@property NSString *readwriteProperty; // getter and setter are both in the protocol
- (int)methodThatReturnsSomething;
@end

- (void)methodWithArgument:(BOOL)argument;

All of these methods are required. Anyone implementing this protocol must implement them all.

Stanford CS193p
Fall 2013

Protocols
Declaring a @protocol
Looks a lot like @interface (but there’s no corresponding @implementation)
@protocol Foo
- (void)someMethod;

@property (readonly) int readonlyProperty; // getter (only) is part of this protocol
@property NSString *readwriteProperty; // getter and setter are both in the protocol
- (int)methodThatReturnsSomething;
@end

- (void)methodWithArgument:(BOOL)argument;
@optional

Now only the first one is required.
You can still say you implement Foo even if you only implement someMethod.

Stanford CS193p
Fall 2013

Protocols
Declaring a @protocol
Looks a lot like @interface (but there’s no corresponding @implementation)
@protocol Foo
- (void)someMethod;

@property (readonly) int readonlyProperty; // getter (only) is part of this protocol
@property NSString *readwriteProperty; // getter and setter are both in the protocol
- (int)methodThatReturnsSomething;
@end

- (void)methodWithArgument:(BOOL)argument;
@optional

@required

Now all of them except methodWithArgument: are required.

Stanford CS193p
Fall 2013

Protocols
Declaring a @protocol
Looks a lot like @interface (but there’s no corresponding @implementation)
@protocol Foo
- (void)someMethod;

@property (readonly) int readonlyProperty; // getter (only) is part of this protocol
@property NSString *readwriteProperty; // getter and setter are both in the protocol
- (int)methodThatReturnsSomething;
@end

- (void)methodWithArgument:(BOOL)argument;
@optional

@required

Now all of them except methodWithArgument: are required.

<Xyzzy

Now you can only say you implement Foo if you also implement the methods in Xyzzy protocol.

>

Stanford CS193p
Fall 2013

Protocols
Declaring a @protocol
Looks a lot like @interface (but there’s no corresponding @implementation)
@protocol Foo
- (void)someMethod;

@property (readonly) int readonlyProperty; // getter (only) is part of this protocol
@property NSString *readwriteProperty; // getter and setter are both in the protocol
- (int)methodThatReturnsSomething;
@end

- (void)methodWithArgument:(BOOL)argument;
@optional

@required

Now all of them except methodWithArgument: are required.

<Xyzzy

Now you can only say you implement Foo if you also implement the methods in Xyzzy protocol.

, NSObject>

Now you would have to implement both the Xyzzy protocol and the NSObject protocol (what’s that!?).

Stanford CS193p
Fall 2013

Protocols
@protocol NSObject
Has things like class, isEqual:, isKindOfClass:, description, performSelector:, etc.
Not uncommon to add this requirement when declaring a protocol.
Then you can rely on using introspection and such on the object obeying the protocol.
Of course, the class NSObject implements the protocol NSObject (so it comes for free!).

Stanford CS193p
Fall 2013

Protocols
Where do @protocol declarations go?
In header files.
It can go in its own, dedicated header file.
Or it can go in the header file of the class that is going to require it’s use.
Which to do?
 If the @protocol is only required by a particular class’s API, then put it there,
 else put it in its own header file.
Example: The UIScrollViewDelegate protocol is defined in UIScrollView.h.

Stanford CS193p
Fall 2013

Protocols
Okay, I have a @protocol declared, now what?
Now classes can promise to implement the protocol in their @interface declarations.
Okay to put in private @interface if they don’t want others to know they implement it.

Example:
#import “Foo.h” // importing the header file that declares the Foo @protocol
@interface MyClass : NSObject <Foo> // MyClass is saying it implements the Foo @protocol
 (do not have to declare Foo’s methods again here, it’s implicit that you implement it)
@end
... or (“or” not “and”... it’s one or the other, private or public, not both) ...
@interface MyClass() <Foo>
@end

@implementation MyClass
// in either case, you had better implement Foo’s @required methods here!
@end

Stanford CS193p
Fall 2013

Protocols
The class must now implement all non-@optional methods
Or face the wrath of the compiler if you do not (but that’s the only wrath you’ll face).
No warning if you don’t implement @optional methods.
@optional is more a mechanism to say: “hey, if you implement this, I’ll use it.”
 (i.e. caller will likely use introspection to be sure you actually implement an @optional method)
@required is much stronger: “if you want this to work, you must implement this.”
 (very unlikely that the caller would use introspection before invoking @required methods)

Stanford CS193p
Fall 2013

Protocols
Okay, so now what?
We have protocols.
We have classes that promise to implement them.
Now we need variables that hold pointers to objects that make that promise.

Examples ...
id <Foo> obj = [[MyClass alloc] init]; // compiler will love this (due to previous slides)
id <Foo> obj = [NSArray array]; // compiler will not like this one bit!

Can also declare arguments to methods to require a protocol
- (void)giveMeFooObject:(id <Foo>)anObjectImplementingFoo;
@property (nonatomic, weak) id <Foo> myFooProperty; // properties too!
If you call these and pass an object which does not implement Foo ... compiler warning!

Stanford CS193p
Fall 2013

Protocols
Just like static typing, this is all just compiler-helping-you stuff
It makes no difference at runtime.

Think of it as documentation for your method interfaces
It’s a powerful way to leverage the id type.

Stanford CS193p
Fall 2013

Protocols
#1 use of protocols in iOS: delegates and dataSources
Often when an object in iOS wants something important and non-generic done, it may delegate it.
It does this through a property on that iOS object that is specified with a certain protocol.
@property (nonatomic, weak) id <UISomeObjectDelegate> delegate;
@property (nonatomic, weak) id <UISomeObjectDataSource> dataSource;
Note that it is a weak (or worse) @property, by the way (more on that soon).
You may implement your own delegates too (we’ll see that later in the course).
This is an alternative to subclassing to provide non-generic behavior.
You use delegation when you want to be “blind” to the class of the implementing object (MVC).

 dataSource and Views
Complex UIView classes commonly have a dataSource because Views cannot own their data!

Other uses of protocols
Declaring what sorts of things are “animatable” (mostly UIView, but other things too).
We’ll see other uses as the quarter progresses.

Stanford CS193p
Fall 2013

Blocks
What is a block?
A block of code (i.e. a sequence of statements inside {}).
Usually included “in-line” with the calling of method that is going to use the block of code.
Very smart about local variables, referenced objects, etc.

What does it look like?
Here’s an example of calling a method that takes a block as an argument.
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key]) {
 *stop = YES;
 }
}];
This NSLog()s every key and value in aDictionary (but stops if the key is “ENOUGH”).

Blocks start with the magical character caret ^
Then (optional) return type, then (optional) arguments in parentheses, then {, then code, then }.

Stanford CS193p
Fall 2013

Blocks
Can use local variables declared before the block inside the block
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 }
}];

But they are read only!
BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // ILLEGAL
 }
}];

Stanford CS193p
Fall 2013

Blocks
Unless you mark the local variable as __block
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

Or if the “variable” is an instance variable
But we only access instance variables (e.g. _display) in setters and getters.
So this is of minimal value to us.

Stanford CS193p
Fall 2013

Blocks
So what about objects which are messaged inside the block?
NSString *stopKey = [@“Enough” uppercaseString];
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([stopKey isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

stopKey will automatically have a strong pointer to it until the block goes out of scope
This is obviously necessary for the block to function properly.

Stanford CS193p
Fall 2013

Blocks
Creating a “type” for a variable that can hold a block
Blocks are kind of like “objects” with an unusual syntax for declaring variables that hold them.
Usually if we are going to store a block in a variable, we typedef a type for that variable, e.g.,
typedef double (^unary_operation_t)(double op);
This declares a type called “unary_operation_t” for variables which can store a block.
 (specifically, a block which takes a double as its only argument and returns a double)
Then we could declare a variable, square, of this type and give it a value ...
unary_operation_t square;
square = ^(double operand) { // the value of the square variable is a block
 return operand * operand;
}
And then use the variable square like this ...
double squareOfFive = square(5.0); // squareOfFive would have the value 25.0 after this

(It is not mandatory to typedef, for example, the following is also a legal way to create square ...)
double (^square)(double op) = ^(double op) { return op * op; };

Stanford CS193p
Fall 2013

Blocks
We could then use the unary_operation_t as follows ...
For example, you could have a property which is an array of blocks ...
@property (nonatomic, strong) NSMutableDictionary *unaryOperations;
Then implement a method like this ...
typedef double (^unary_operation_t)(double op);
- (void)addUnaryOperation:(NSString *)op whichExecutesBlock:(unary_operation_t)opBlock {
 self.unaryOperations[op] = opBlock;
}

Note that the block can be treated somewhat like an object (e.g., adding it to a dictionary).
Later, we could use an operation added with the method above like this ...
- (double)performOperation:(NSString *)operation onOperand:(double)operand
{
 unary_operation_t unaryOp = self.unaryOperations[operation];
 if (unaryOp) {
 double result = unaryOp(operand);
 }
 . . .
}

Stanford CS193p
Fall 2013

We don’t always typedef
When a block is an argument to a method and is used immediately, often there is no typedef.

Here is the declaration of the dictionary enumerating method we showed earlier ...
- (void)enumerateKeysAndObjectsUsingBlock:(void (^)(id key, id obj, BOOL *stop))block;

The syntax is exactly the same as the typedef except that the name of the typedef is not there.

For reference, here’s what a typedef for this argument would look like this ...
typedef void (^enumeratingBlock)(id key, id obj, BOOL *stop);
(i.e. the underlined part is not used in the method argument)

No “name” for the
type appears here.

Blocks

This (“block”) is the keyword for the argument
(e.g. the local variable name for the argument

inside the method implementation).

Stanford CS193p
Fall 2013

Blocks
Some shorthand allowed when defining a block
If there are no arguments to the block, you do not need to have any parentheses.
Consider this code ...
[UIView animateWithDuration:5.0 animations:^
 view.opacity = 0.5;
}];

() {

Stanford CS193p
Fall 2013

Blocks
Some shorthand allowed when defining a block
If there are no arguments to the block, you do not need to have any parentheses.
Consider this code ...
[UIView animateWithDuration:5.0 animations:^
 view.opacity = 0.5;
}];

No need for the () then.No arguments to this block.

{

Stanford CS193p
Fall 2013

Blocks
Some shorthand allowed when defining a block
If there are no arguments to the block, you do not need to have any parentheses.
Consider this code ...
[UIView animateWithDuration:5.0 animations:^
 view.opacity = 0.5;
}];

{

Also, return type can usually be inferred from the block, in which case it is optional.
NSSet *mySet = ...;
NSSet *matches = [mySet objectsPassingTest:^

Return type is clearly a BOOL.

(id obj, ...) {BOOL
 return [obj isKindOfClass:[UIView class]];
}];

Stanford CS193p
Fall 2013

Blocks
Some shorthand allowed when defining a block
If there are no arguments to the block, you do not need to have any parentheses.
Consider this code ...
[UIView animateWithDuration:5.0 animations:^
 view.opacity = 0.5;
}];

{

Also, return type can usually be inferred from the block, in which case it is optional.
NSSet *mySet = ...;
NSSet *matches = [mySet objectsPassingTest:^

So no need for the BOOL declaration here.Return type is clearly a BOOL.

(id obj, ...) {
 return [obj isKindOfClass:[UIView class]];
}];

Stanford CS193p
Fall 2013

Blocks
How blocks sort of act like objects
It turns out blocks can be stored inside other objects (in properties, arrays, dictionaries, etc.).
But they act like objects only for the purposes of storing them (their only “method” is copy).

For example, if you had a class with the following property ...
@property (nonatomic, strong) NSMutableArray *myBlocks; // array of blocks
... you could do the following ...
[self.myBlocks addObject:^{
 [self doSomething];
}];
... neat!

By the way, you invoke a block that is in the array like this ...
void (^doit)(void) = self.myBlocks[0];
doit();

But there is danger lurking here ...

Stanford CS193p
Fall 2013

Memory Cycles (a bad thing)
We said that all objects referenced inside a block will stay in the heap as long as the block does
 (in other words, blocks keep a strong pointer to all objects referenced inside of them).

In the example above, self is an object reference in this block ...
[self.myBlocks addObject:^ {
 [self doSomething];
}];
Thus the block will have a strong pointer to self.
But notice that self also has a strong pointer to the block (it’s in its myBlocks array)!

This is a serious problem.
Neither self nor the block can ever escape the heap now.
That’s because there will always be a strong pointer to both of them (each other’s pointer).
This is called a memory “cycle.”

Blocks

Stanford CS193p
Fall 2013

Blocks
Memory Cycles Solution
You’ll recall that local variables are always strong.
That’s fine because when they go out of scope, they disappear, so the strong pointer goes away.

It turns out there’s a way to declare that a local variable is weak. Here’s how ...
__weak MyClass *weakSelf = self; // even though self is strong, weakSelf is weak

Now if we reference weakSelf inside the block, then the block will not strongly point to self ...
[self.myBlocks addObject:^ {
 [weakSelf doSomething];
}];

Now we no longer have a cycle (self still has a strong pointer to the block, but that’s okay).
As long as someone in the universe has a strong pointer to this self, the block’s pointer is good.
And since the block will not exist if self does not exist (since myBlocks won’t exist), all is well!

Stanford CS193p
Fall 2013

Blocks
When do we use blocks in iOS?
Enumeration (like we saw above with NSDictionary)
View Animations (we’ll talk about that next)
Sorting (sort this thing using a block as the comparison method)
Notification (when something happens, execute this block)
Error handlers (if an error happens while doing this, execute this block)
Completion handlers (when you are done doing this, execute this block)

And a super-important use: Multithreading
With Grand Central Dispatch (GCD) API
We’ll talk about that later in the course

More about blocks
Search “blocks” in Xcode documentation.

Stanford CS193p
Fall 2013

Animation
Animating views
Animating specific properties.
Animating a group of changes to a view “all at once.”
Physics-based animation.
Animation of View Controller transitions
Beyond the scope of this course, but fundamental principles are the same.
Core Animation
Underlying powerful animation framework (also beyond the scope of this course).

Stanford CS193p
Fall 2013

Animation
Animation of important UIView properties
The changes are made immediately, but appear on-screen over time (i.e. not instantly).
UIView‘s class method(s) animationWithDuration:...

Animation of the appearance of arbitrary changes to a UIView
By flipping or dissolving or curling the entire view.
UIView’s class method transitionWithView:...

Dynamic Animator
Specify the “physics” of animatable objects (usually UIViews).
Gravity, pushing forces, attachments between objects, collision boundaries, etc.
Let the physics happen!

Stanford CS193p
Fall 2013

UIView Animation
Changes to certain UIView properties can be animated over time
frame
transform (translation, rotation and scale)
alpha (opacity)

Done with UIView class method and blocks
The class method takes animation parameters and an animation block as arguments.
The animation block contains the code that makes the changes to the UIView(s).
Most also have a “completion block” to be executed when the animation is done.
The changes inside the block are made immediately (even though they will appear “over time”).

Stanford CS193p
Fall 2013

UIView Animation
Animation class method in UIView
+ (void)animateWithDuration:(NSTimeInterval)duration
 delay:(NSTimeInterval)delay
 options:(UIViewAnimationOptions)options
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL finished))completion;

Example
[UIView animateWithDuration:3.0
 delay:0.0
 options:UIViewAnimationOptionBeginFromCurrentState
 animations:^{ myView.alpha = 0.0; }
 completion:^(BOOL fin) { if (fin) [myView removeFromSuperview]; }];
This would cause myView to “fade” out over 3 seconds (starting immediately).
Then it would remove myView from the view hierarchy (but only if the fade completed).
If, within the 3 seconds, someone animated the alpha to non-zero, the removal would not happen.

Stanford CS193p
Fall 2013

UIView Animation
Another example
if (myView.alpha == 1.0) {
 [UIView animateWithDuration:3.0
 delay:2.0
 options:UIViewAnimationOptionBeginFromCurrentState
 animations:^{ myView.alpha = 0.0; }
 completion:nil];
 NSLog(@“alpha is %f.”, myView.alpha);
}

This would also cause myView to “fade” out over 3 seconds (starting in 2 seconds in this case).
The NSLog() would happen immediately (i.e. not after 3 or 5 seconds) and would print “alpha is 0.”
In other words, the animation block’s changes are executed immediately, but the animation itself
 (i.e. the visual appearance of the change to alpha) starts in 2 seconds and takes 3 seconds.

Stanford CS193p
Fall 2013

UIView Animation
UIViewAnimationOptions
BeginFromCurrentState // interrupt other, in-progress animations of these properties
AllowUserInteraction // allow gestures to get processed while animation is in progress
LayoutSubviews // animate the relayout of subviews along with a parent’s animation
Repeat // repeat indefinitely
Autoreverse // play animation forwards, then backwards
OverrideInheritedDuration // if not set, use duration of any in-progress animation
OverrideInheritedCurve // if not set, use curve (e.g. ease-in/out) of in-progress animation
AllowAnimatedContent // if not set, just interpolate between current and end state image
CurveEaseInEaseOut // slower at the beginning, normal throughout, then slow at end
CurveEaseIn // slower at the beginning, but then constant through the rest
CurveLinear // same speed throughout

Stanford CS193p
Fall 2013

UIView Animation
Sometimes you want to make an entire view modification at once
By flipping view over UIViewAnimationOptionsTransitionFlipFrom{Left,Right,Top,Bottom}
Dissolving from old to new state UIViewAnimationOptionsTransitionCrossDissolve
Curling up or down UIViewAnimationOptionsTransitionCurl{Up,Down}

Just put the changes inside the animations block of this UIView class method ...
+ (void)transitionWithView:(UIView *)view
 duration:(NSTimeInterval)duration
 options:(UIViewAnimationOptions)options
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL finished))completion;

Stanford CS193p
Fall 2013

UIView Animation
Animating changes to the view hierarchy is slightly different
Animate swapping the replacement of one view with another in the view hierarchy.
+ (void)transitionFromView:(UIView *)fromView
 toView:(UIView *)toView
 duration:(NSTimeInterval)duration
 options:(UIViewAnimationOptions)options
 completion:(void (^)(BOOL finished))completion;

Include UIViewAnimationOptionShowHideTransitionViews if you want to use the hidden property.
Otherwise it will actually remove fromView from the view hierarchy and add toView.

Stanford CS193p
Fall 2013

Dynamic Animation
A little different approach to animation than above
Set up physics relating animatable objects and let them run until they resolve to stasis
Easily possible to set it up so that stasis never occurs, but that could be performance problem

Steps
Create a UIDynamicAnimator
Add UIDynamicBehaviors to it (gravity, collisions, etc.)
Add UIDynamicItems (usually UIViews) to the UIDynamicBehaviors
That’s it! Things will instantly start happening.

Stanford CS193p
Fall 2013

Dynamic Animator
Create a UIDynamicAnimator
UIDynamicAnimator *animator = [[UIDynamicAnimator alloc] initWithReferenceView:aView];
If animating views, all views must be in a view hierarchy with reference view at the top.

Create and add UIDynamicBehaviors
e.g., UIGravityBehavior *gravity = [[UIGravityBehavior alloc] init];
[animator addBehavior:gravity];
e.g., UICollisionBehavior *collider = [[UICollisionBehavior alloc] init];
[animator addBehavior:collider];

Stanford CS193p
Fall 2013

Dynamic Animator
Add UIDynamicItems to a UIDynamicBehavior
id <UIDynamicItem> item1 = ...;
id <UIDynamicItem> item2 = ...;
[gravity addItem:item1];
[collider addItem:item1];
[gravity addItem:item2];

The items have to implement the UIDynamicItem protocol ...
@protocol UIDynamicItem
@property (readonly) CGRect bounds;
@property (readwrite) CGPoint center;
@property (readwrite) CGAffineTransform transform;
@end
UIView implements this @protocol.

If you change center or transform while animator is running, you must call UIDynamicAnimator’s
- (void)updateItemUsingCurrentState:(id <UIDynamicItem>)item;

Stanford CS193p
Fall 2013

Behaviors
UIGravityBehavior
@property CGFloat angle;
@property CGFloat magnitude; // 1.0 is 1000 points/s/s

UICollisionBehavior
@property UICollisionBehaviorMode collisionMode; // Items, Boundaries, Everything (default)
- (void)addBoundaryWithIdentifier:(NSString *)identifier forPath:(UIBezierPath *)path;
@property BOOL translatesReferenceBoundsIntoBoundary;

UIAttachmentBehavior
- (instancetype)initWithItem:(id <UIDynamicItem>)item attachedToAnchor:(CGPoint)anchor;
- (instancetype)initWithItem:(id <UIDynamicItem>)i1 attachedToItem:(id <UIDynamicItem>)i2;
- (instancetype)initWithItem:(id <UIDynamicItem>)item offsetFromCenter:(CGPoint)offset ...
@property (readwrite) CGFloat length; // distance between attached things (settable!)
Can also control damping and frequency of oscillations.
@property (readwrite) CGPoint anchorPoint; // can be reset at any time

Stanford CS193p
Fall 2013

Behaviors
UISnapBehavior
- (instancetype)initWithItem:(id <UIDynamicItem>)item snapToPoint:(CGPoint)point;
Imagine four springs at four corners around the item in the new spot.
You can control the damping of these “four springs” with @property CGFloat damping;.

UIPushBehavior
@property UIPushBehaviorMode mode; // Continuous or Instantaneous
@property CGVector pushDirection;
@property CGFloat magnitude/angle; // magnitude 1.0 moves a 100x100 view at 100 pts/s/s

Stanford CS193p
Fall 2013

Behaviors
UIDynamicItemBehavior
Controls the behavior of items as they are affected by other behaviors.
Any item added to this behavior (with addItem:) will be affected.
@property BOOL allowsRotation;
@property BOOL friction;
@property BOOL elasticity;
@property CGFloat density;

Can also get information about items ...
- (CGPoint)linearVelocityForItem:(id <UIDynamicItem>)item;
- (CGFloat)angularVelocityForItem:(id <UIDynamicItem>)item;

If you have multiple UIDynamicItemBehaviors, you will have to know what you are doing.

Stanford CS193p
Fall 2013

Behaviors
UIDynamicBehavior
Superclass of behaviors.
You can create your own subclass which is a combination of other behaviors.
Usually you override init method(s) and addItem(s): and removeItem(s): to do ...
- (void)addChildBehavior:(UIDynamicBehavior *)behavior;

This is a good way to encapsulate a physics behavior that is a composite of other behaviors.
You might also have some API which helps your subclass configure its children.

All behaviors know the UIDynamicAnimator they are part of
They can only be part of one at a time.
@property UIDynamicAnimator *dynamicAnimator;
And the behavior will be sent this message when its animator changes ...
- (void)willMoveToAnimator:(UIDynamicAnimator *)animator;

Stanford CS193p
Fall 2013

Behaviors
UIDynamicBehavior’s action property
Every time the behavior is applied, the block set with this UIDynamicBehavior property is called ...
@property (copy) void (^action)(void);
 (i.e. it’s called action, it takes no arguments and returns nothing)

You can set this to do anything you want.
But it will be called a lot, so make it very efficient.

If the action refers to properties in the behavior itself, watch out for memory cycles.

Stanford CS193p
Fall 2013

Demo
Dropit
Drop squares, collect them at the bottom of the screen, then blow them up!

What to look for ...
UIDynamicAnimator and UIDynamicItem @protocol
UIGravityBehavior
UICollisionBehavior
UIDynamicItemBehavior (basically physics configuration)
Composite Behaviors (UIDynamicBehavior subclass)
Flying UIViews using animateWithDuration:...
Animation completion blocks
UIDynamicAnimator’s delegate (reacting to pauses in dynamic animation)
UIAttachmentBehavior
Adding an action block to a behavior
Observing the behavior of items (elapsed animation time, linear velocity, etc.)
UICollisionBehavior’s collisionDelegate

Stanford CS193p
Fall 2013

Coming Up
Wednesday
Continuation of demo.
Autolayout

Friday
Still hoping to get University Developer Program up and running.

Homework
Due a week from today.

Next Week
Scroll View
Table View
Collection View

Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Today
Finish Animation Demo
Less tippy, guided drops.

Autolayout
How to make device autorotation easy(er).
And make your View Controller work in different environments (i.e. with different bounds).

Autolayout Demo
Making Attributor autorotate properly.

Stanford CS193p
Fall 2013

Demo
More Dropit
Less tippy!
Guiding the fall of drops.
If time permits, gridding using collision delegate (if not, will post code).

What to look for today ...
UIDynamicItemBehavior (basically physics configuration)
UIAttachmentBehavior
Adding an action block to a behavior
Observing the behavior of items (elapsed animation time, linear velocity, etc.)
UICollisionBehavior’s collisionDelegate

Stanford CS193p
Fall 2013

Autolayout
Setting UIView frames using rules rather than numbers
Why? Because many things affect the size of the area available to put views ...
 Rotation
 4 inch versus 3.5 inch iPhone
 Embedding Controller’s Views inside other Controllers (tab bars, navigation controllers, etc.)
We need these rules to put the views in their place no matter what bounds are available.
We call these rules “constraints”.
There is a very powerful API (NSLayoutConstraint) for doing this, but ...

We almost always set up these rules in Xcode 5 graphically
So this is all best shown with some screen shots ...

Stanford CS193p
Fall 2013

Let’s start with two objects,
Thing 1 and Thing 2.
They are UILabels,

but they could be any UIView.

They have been dragged
out here without using
the blue guidelines.

Stanford CS193p
Fall 2013

It’d be great to get a Preview of
what this will look like when we

run in various autorotations!

Turns out you can do
exactly that in Xcode 5

using its Preview feature.

Think of Preview as just another
“document” in your project.

You can open it up and put it wherever you want
(Assistant, main editing window, separate window, etc.).

Stanford CS193p
Fall 2013

Click here to bring up a
mini-navigator menu.

A cool trick is to hold down
CTRL and SHIFT while

clicking on a file to open ...

Stanford CS193p
Fall 2013

... a little window will
appear asking you where
you want to put this file.

Stanford CS193p
Fall 2013

Let’s put it in the
Assistant Editor.

Stanford CS193p
Fall 2013

Assistant Editor
with Preview.

Stanford CS193p
Fall 2013

Preview lets you pick
the orientation ...

Stanford CS193p
Fall 2013

Uh oh!
No Thing 2!

Stanford CS193p
Fall 2013

Let’s rotate back
to Portrait.

Stanford CS193p
Fall 2013

You can also pick tall
vs. short iPhone.

Stanford CS193p
Fall 2013

Thing 1 and Thing 2 are both staying
stuck to the origin (upper left) and
not adapting to the changes in size

of their superview.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Close Assistant Editor.

Stanford CS193p
Fall 2013

It is also possible to
preview Landscape mode in

Xcode while editing.
It’s not exactly the same

layout as running it,
but it’s pretty close.

Just select a scene ...

Stanford CS193p
Fall 2013

... then, in its Attributes Inspector,
choose Orientation Landscape.

Stanford CS193p
Fall 2013

Thing 2 is exactly where it was before
(relative to the upper left origin).

But that’s now off-screen.

Thing 2

Stanford CS193p
Fall 2013

Let’s go back to Portrait.

“Inferred” means inferred from the context of the Controller
(e.g. with tab bars, navigation controllers, etc. shown).

By default, Portrait is inferred.

Stanford CS193p
Fall 2013

Whew, Thing 2 is indeed still there!

Stanford CS193p
Fall 2013

Let’s say we want Thing 1 and Thing 2 to
stick to their nearby corner

(i.e. to stick to that corner no matter where
the corner moves to).

We can communicate that
to Xcode by dragging to

that corner and letting the
blue guidelines appear.

Stanford CS193p
Fall 2013

Ditto for Thing 2.

Stanford CS193p
Fall 2013

Now let’s try Landscape again.

Stanford CS193p
Fall 2013

Still doesn’t work because the blue guidelines are not enough.
We have to tell iOS that we want the blue guidelines to be used

to create some “constraints” on our layout.

Stanford CS193p
Fall 2013

Back to Portrait.

Stanford CS193p
Fall 2013

How do we tell Xcode to
invent these constraints

which will keep our views
in the spots implied by the

blue guidelines?

Using this little
button here ...

Stanford CS193p
Fall 2013

... to ask Xcode 5 to suggest constraints.

The “Suggested” constraints are usually very
good as long as you use blue guidelines.

Always think twice before varying from the
Suggested guidelines

(maybe even go back and redo blue guidelines?).

The top part of this menu works on
an individual view whereas the bottom

half works on all the views in the
Controller’s View.

Stanford CS193p
Fall 2013

Nothing looks any different ...

But lets click on Thing 1
to see what happened.

Stanford CS193p
Fall 2013

And also click on the
Size Inspector.

That’s where all constraints
are shown for a view.

This first constraint constrains Thing 1’s left
(leading) edge to its superview’s leading edge

(separated by the “default” distance).

This second constraint constrains it to the
default distance from the top of its superview.

Xcode knew to add these particular constraints
because we used the blue guidelines!

Stanford CS193p
Fall 2013

Thing 2 has similar constraints,
but to the right and bottom edges.

Let’s look at Thing 2 ...

Blue (vs other colors) constraints mean
“constraints with no apparent problems.”

You can actually see the
constraints as little blue beams.

These beams are selectable and inspectable and you can
delete a constraint by hitting delete (so be careful).

Stanford CS193p
Fall 2013

Let’s check out Landscape ...

Stanford CS193p
Fall 2013

Victory!

Stanford CS193p
Fall 2013

Back to Portrait ...

Stanford CS193p
Fall 2013

Let’s see what happens if we
don’t use blue guidelines ...

Excellent.

Stanford CS193p
Fall 2013

Here’s a “Bad Thing” that was
dragged out and sized

without the blue guidelines.

It’s supposed to be in the middle of the View but, again,
no blue guidelines were used, so it’s a little off.

Stanford CS193p
Fall 2013

Let’s try to set its constraints
to the Suggested constraints.

Stanford CS193p
Fall 2013

Xcode tried its best, but these constraints are
very bad because they all have “magic
numbers” in them (e.g. 62, 89, 68, 198).

It is usually the wrong thing to have a
constraint with a magic number in it.

Especially if text is involved.

Stanford CS193p
Fall 2013

Also, if we try Landscape ...

Stanford CS193p
Fall 2013

... the Bad Thing will not stay
anywhere near the “center”.

Stanford CS193p
Fall 2013

Okay, back to Portrait.

Stanford CS193p
Fall 2013

If a view has bad constraints, you can clear
them out at any time using this menu item.

Stanford CS193p
Fall 2013

Let’s add some constraints to Bad Thing in a different way
(i.e. not using blue guidelines and Suggested constraints).

One way to do that is with
this button which is used to
line up a view with other

views or with its superview.

Stanford CS193p
Fall 2013

If you pick 2 (or more)
views at once (using shift-click),
you can also align them in all

these ways.

We’re going to pick both the
Horizontal and Vertical Centering options
(“in Container” means in our superview).

Stanford CS193p
Fall 2013

Clicking here adds the
2 new constraints.

Stanford CS193p
Fall 2013

It added them!

Notice that they are drawn in
yellow. This is because they
don’t match what is currently

showing in the scene.

Stanford CS193p
Fall 2013

That fact is also reported here ...

Stanford CS193p
Fall 2013

... and in the Document Outline.

Click here to show the
Document Outline.

We have not talked much about the
Document Outline, but it is awesome!

It shows everything
(views, gestures, constraints, etc.)
in your storyboard in outline form.

You can select objects here and also
ctrl-drag to/from them!

Let’s click on this!

Stanford CS193p
Fall 2013

Yellow problems are generally
mismatches between what’s

showing in the scene and what
the constraints would do.

Click on the yellow triangle
to resolve a problem.

The dashed yellow line shows
what the constraints think this

view’s frame should be.

Stanford CS193p
Fall 2013

Here are the choices to
resolve the mismatch.

Since we’re happy
with our constraints ...

... we’ll choose to Update
Frame to change the

storyboard to match the
constraints.

Stanford CS193p
Fall 2013

Bingo!

No more yellow constraints.

Click here to go back to showing outline.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Okay, Landscape again.

Stanford CS193p
Fall 2013

Nice!

Stanford CS193p
Fall 2013

And back.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

You can click on a constraint directly.

And change things about it.
We’re not going to get into that level

of detail at this point, though.

Stanford CS193p
Fall 2013

If you hit
DELETE, a
selected

constraint will
be removed!

That has caused a serious
problem here, though.

You can tell because of this
red circle in the

Document Outline. Align Center X
is gone.

Let’s click on that to see what’s up ...

Stanford CS193p
Fall 2013

“Need constraints for: X position”

Indeed, there is no way for the
autolayout system to know where
to put Bad Thing horizontally now.

Stanford CS193p
Fall 2013

Luckily, we can just click on this red circle ...

... and Xcode will offer to fix it for us!

Stanford CS193p
Fall 2013

The constraint lines are
back to being blue
(not yellow or red).

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

What if we change our
minds and want Bad Thing
to sit on top of Thing 2?

We can just pick it up and
drag it to where we want

with blue guidelines.

Stanford CS193p
Fall 2013

However, this will NOT
change the constraints.

Constraints unchanged.

Stanford CS193p
Fall 2013

We could
Clear Constraints

here ...

... or we can Delete
them individually.

Here’s another way
to do that.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Now we want to
constraint Bad Thing to
stay on top of Thing 2.

Let’s do that yet a third way
(i.e. not with blue guidelines/

Suggested and not with a menu
at the bottom).

Stanford CS193p
Fall 2013

If you want a view to be
constrained by another view’s size

or position, just ctrl-drag
between them.

Stanford CS193p
Fall 2013

You will then be asked how you
want them constrained.

You can pick multiple ways.

Stanford CS193p
Fall 2013

Here we’ll keep the two views
a fixed distance apart

(constrained Vertical Spacing),
 and ...

Stanford CS193p
Fall 2013

Keep their right
edges aligned at all

times.

Stanford CS193p
Fall 2013

Notice new
constraints.

Notice new
constraints.

Stanford CS193p
Fall 2013

Let’s try Landscape now ...

Stanford CS193p
Fall 2013

Yay!

Stanford CS193p
Fall 2013

... and back.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

In addition to ctrl-dragging
between two views, you can
ctrl-drag from a view to its

superview ...

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Or even a view to itself
(if you want to constrain its

width or height, for example).

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

This is all just the tip of the
iceberg for Autolayout, but

hopefully it will get you started!

And we’ve definitely covered
everything you should need for

your homework.

Stanford CS193p
Fall 2013

Demo
Attributor Autorotation
Since we dragged to blue guidelines, it’s mostly going to be automatic.
But there are a couple of things to fix up.
And we’ll make a couple of changes too.

Stanford CS193p
Fall 2013

Coming Up
Friday
Still hoping to get University Developer Program up and running!

Homework
Due on Monday

Next Week
Scroll View
Table View
Collection View

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
 Multithreading!

Posting blocks on queues (which are then executed on other threads).!

 UIScrollView!
A “window” on an arbitrarily large content area that can be moved and zoomed.!

 Demo!
Imaginarium!

 UITableView!
(Time Permitting)!
Data source-driven vertical list of views.

Stanford CS193p!
Fall 2013

Multithreading
Queues!

Multithreading is mostly about “queues” in iOS.!
Blocks are lined up in a queue (method calls can also be enqueued).!
Then those blocks are pulled off the queue and executed on an associated thread.!

Main Queue!
There is a very special queue called the “main queue.”!
All UI activity MUST occur on this queue and this queue only.!
And, conversely, non-UI activity that is at all time consuming must NOT occur on that queue.!
We want our UI to be responsive!!
Blocks are pulled off and worked on in the main queue only when it is “quiet”.!

Other Queues!
Mostly iOS will create these for us as needed.!
We’ll give a quick overview of how to create your own (but usually not necessary).

Stanford CS193p!
Fall 2013

Multithreading
Executing a block on another queue!
dispatch_queue_t queue = …;
dispatch_async(queue, ^{ });

Getting the main queue!
dispatch_queue_t mainQ = dispatch_get_main_queue();
NSOperationQueue *mainQ = [NSOperationQueue mainQueue]; // for object-oriented APIs

Creating a queue (not the main queue)!
dispatch_queue_t otherQ = dispatch_queue_create(“name”, NULL); // name a const char *!

Easy mode … invoking a method on the main queue!
NSObject method …!
- (void)performSelectorOnMainThread:(SEL)aMethod
 withObject:(id)obj
 waitUntilDone:(BOOL)waitUntilDone;

dispatch_async(dispatch_get_main_queue(), ^{ /* call aMethod */ });

Stanford CS193p!
Fall 2013

Multithreading
Example of an iOS API that uses multithreading!
NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL urlWithString:@“http://...”]];

NSURLConfiguration *configuration = …;

NSURLSession *session = …;

NSURLSessionDownloadTask *task;

task = [session downloadTaskWithRequest:request

 completionHandler:^(NSURL *localfile, NSURLResponse *response, NSError *error) {

 /* want to do UI things here, can I? */
}];

[task resume];

downloadTaskWithRequest:completionHandler: will do its work (downloading that URL)!
 NOT in the main thread (i.e. it will not block the UI while it waits on the network).!
!
The completionHandler block above might execute on the main thread (or not)!
 depending on how you create the NSURLSession.!
Let’s look at the two options (on or off the main queue) …

Stanford CS193p!
Fall 2013

Multithreading
On the main queue …!
NSURLSession *session = [NSURLSession sessionWithConfiguration:configuration

 delegate:nil

 delegateQueue:[NSOperationQueue mainQueue]];

NSURLSessionDownloadTask *task;

task = [session downloadTaskWithRequest:request

 completionHandler:^(NSURL *localfile, NSURLResponse *response, NSErr or *error) {

 /* yes, can do UI things directly because this is called on the main queue */
}];

[task resume];

!
Since the delegateQueue is the main queue, our completionHandler will be on the main queue.!
When the URL is done downloading, the block above will execute on the main queue.!
Thus we can do any UI code we want there.!
Of course, if you are doing non-UI things here, they’d best be quick (don’t block main queue!).

Stanford CS193p!
Fall 2013

Multithreading
Off the main queue …!
NSURLSession *session = [NSURLSession sessionWithConfiguration:configuration]; // no delegateQueue

NSURLSessionDownloadTask *task;

task = [session downloadTaskWithRequest:request

 completionHandler:^(NSURL *localfile, NSURLResponse *response, NSError *error) {

 dispatch_async(dispatch_get_main_queue(), ^{ /* do UI things */ });

 or [self performSelectorOnMainThread:@selector(doUIthings) withObject:nil waitUntilDone:NO];

}];

[task resume];

!
In this case, you can’t do any UI stuff because the completionHandler is not on the main queue.!
To do UI stuff, you have to post a block (or call a method) back on the main queue (as shown).!

Stanford CS193p!
Fall 2013

UIScrollView

Stanford CS193p!
Fall 2013

Adding subviews to a normal UIView ...
subview.frame = ...;
[view addSubview:subview];

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a normal UIView ...
subview.frame = ...;
[view addSubview:subview];

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a normal UIView ...
subview.frame = ...;
[view addSubview:subview];

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a UIScrollView ...
scrollView.contentSize = CGSizeMake(3000, 2000);

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a UIScrollView ...

[view addSubview:subview1];

scrollView.contentSize = CGSizeMake(3000, 2000);
subview1.frame = CGRectMake(2700, 100, 120, 180);

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Adding subviews to a UIScrollView ...
subview2.frame = CGRectMake(50, 100, 2500, 1600);
scrollView.contentSize = CGSizeMake(3000, 2000);

Stanford CS193p!
Fall 2013

[view addSubview:subview2];

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview];

scrollView.contentSize = CGSizeMake(3000, 2000);
Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview];

scrollView.contentSize = CGSizeMake(3000, 2000);
Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview];

scrollView.contentSize = CGSizeMake(3000, 2000);
Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview];

scrollView.contentSize = CGSizeMake(3000, 2000);
Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview];

scrollView.contentSize = CGSizeMake(3000, 2000);
Adding subviews to a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Positioning subviews in a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Positioning subviews in a UIScrollView ...
subview1.frame = CGRectMake(2250, 50, 120, 180);

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
Positioning subviews in a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
scrollView.contentSize = CGSizeMake(2500, 1600);

Positioning subviews in a UIScrollView ...

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
scrollView.contentSize = CGSizeMake(2500, 1600);

Voilà!

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
scrollView.contentSize = CGSizeMake(2500, 1600);

Voilà!

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
scrollView.contentSize = CGSizeMake(2500, 1600);

Voilà!

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

subview2.frame = CGRectMake(0, 0, 2500, 1600);
scrollView.contentSize = CGSizeMake(2500, 1600);

Voilà!

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

CGPoint upperLeftOfVisible = scrollView.contentOffset;
Upper left corner of currently-showing area

contentOffset.x

contentOffset.y

In content area’s coordinates.

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Visible area of a scroll view
scrollView.bounds

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

CGRect visibleRect = [scrollView convertRect:scrollView.bounds toView:subview];
Visible area of a scroll view

scrollView.bounds
’s subview in that view’s coordinates

What’s the difference? Might be scaled (due to zooming), for example.

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

UIScrollView
How do you create one?!

Just like any other UIView. Drag out in a storyboard or use alloc/initWithFrame:.!
Or select a UIView in your storyboard and choose “Embed In -> Scroll View” from Editor menu.!

Or add your “too big” UIView using addSubview:!
UIImage *image = [UIImage imageNamed:@“bigimage.jpg”]; !
UIImageView *iv = [[UIImageView alloc] initWithImage:image]; // frame.size = image.size!
[scrollView addSubview:iv]; !
Add more subviews if you want.!
All of the subviews’ frames will be in the UIScrollView’s content area’s coordinate system!
 (that is, (0,0) in the upper left & width and height of contentSize.width & .height).!

Don’t forget to set the contentSize
Common bug is to do the above 3 lines of code (or embed in Xcode) and forget to say:!
 scrollView.contentSize = imageView.bounds.size

Stanford CS193p!
Fall 2013

UIScrollView
Scrolling programmatically!
- (void)scrollRectToVisible:(CGRect)aRect animated:(BOOL)animated; !

Other things you can control in a scroll view!
Whether scrolling is enabled.!
Locking scroll direction to user’s first “move”.!
The style of the scroll indicators (call flashScrollIndicators when your scroll view appears).!
Whether the actual content is “inset” from the content area (contentInset property).

Stanford CS193p!
Fall 2013

UIScrollView
Zooming!

All UIView’s have a property (transform) which is an affine transform (translate, scale, rotate).!
Scroll view simply modifies this transform when you zoom.!
Zooming is also going to affect the scroll view’s contentSize and contentOffset.!

Will not work without minimum/maximum zoom scale being set!
scrollView.minimumZoomScale = 0.5; // 0.5 means half its normal size
scrollView.maximumZoomScale = 2.0; // 2.0 means twice its normal size!

Will not work without delegate method to specify view to zoom!
- (UIView *)viewForZoomingInScrollView:(UIScrollView *)sender;
If your scroll view only has one subview, you return it here. More than one? Up to you.!

Zooming programatically!
@property (nonatomic) float zoomScale; !
- (void)setZoomScale:(float)scale animated:(BOOL)animated; !
- (void)zoomToRect:(CGRect)zoomRect animated:(BOOL)animated;

Stanford CS193p!
Fall 2013

scrollView.zoomScale = 1.2;
Stanford CS193p!

Fall 2013

Stanford CS193p!
Fall 2013

scrollView.zoomScale = 1.0;
Stanford CS193p!

Fall 2013

Stanford CS193p!
Fall 2013

scrollView.zoomScale = 1.2;
Stanford CS193p!

Fall 2013

Stanford CS193p!
Fall 2013

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;
Stanford CS193p!

Fall 2013

Stanford CS193p!
Fall 2013

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;
Stanford CS193p!

Fall 2013

Stanford CS193p!
Fall 2013

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

Stanford CS193p!
Fall 2013

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

Stanford CS193p!
Fall 2013

UIScrollView
Lots and lots of delegate methods!

The scroll view will keep you up to date with what’s going on.

Example: delegate method will notify you when zooming ends
- (void)scrollViewDidEndZooming:(UIScrollView *)sender

withView:(UIView *)zoomView // from delegate method above
atScale:(CGFloat)scale;

If you redraw your view at the new scale, be sure to reset the transform back to identity.

Stanford CS193p!
Fall 2013

Demo
Imaginarium
UIImageView inside a UIScrollView
Multithreaded download from a URL
UIActivityIndicatorView to show user that a download is in progress

Stanford CS193p!
Fall 2013

Coming Up
Wednesday!

More UITableView (with demo)!
iPad!

Homework!
Next Homework will be assigned on Wednesday, due the next Wednesday.!

Friday!
Stanford Only Review Section!

Next Week!
Core Data (Object-Oriented Database)

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
 UITableView!

 Data source-driven vertical list of views.!

 iPad!
 Device-specific UI idioms.!

 Demo!
 Shutterbug

Stanford CS193p!
Fall 2013

UITableView
Very important class for displaying data in a table!

One-dimensional table.!
It’s a subclass of UIScrollView.!
Table can be static or dynamic (i.e. a list of items).!
Lots and lots of customization via a dataSource protocol and a delegate protocol.!
Very efficient even with very large sets of data.!

Displaying multi-dimensional tables ...!
Usually done via a UINavigationController with multiple MVC’s where View is UITableView!

Kinds of UITableViews!
Plain or Grouped!
Static or Dynamic!
Divided into sections or not!
Different formats for each row in the table (including completely customized)

Stanford CS193p!
Fall 2013

UITableView
UITableViewStylePlain UITableViewStyleGrouped

Dynamic (List)!
& Plain

(ungrouped)

Static!
& Grouped

Stanford CS193p!
Fall 2013

UITableView

Table Header

Plain Style

@property UIView *tableHeaderView;

Stanford CS193p!
Fall 2013

UITableView

Table Footer

Table Header

Plain Style

@property UIView *tableFooterView;

Stanford CS193p!
Fall 2013

UITableView

Table Footer

Table Header

Section

Plain Style

Stanford CS193p!
Fall 2013

UITableView

Table Footer

Table Header

Section Header

Section

Plain Style

UITableViewDataSource’s tableView:titleForHeaderInSection:

Stanford CS193p!
Fall 2013

UITableView

Table Footer

Table Header

Section Header

Section Footer

Section

Plain Style

UITableViewDataSource’s tableView:titleForFooterInSection:

Stanford CS193p!
Fall 2013

UITableView

Table Cell

Table Footer

Table Header

Section Header

Section Footer

Section

Plain Style

UITableViewDataSource’s tableView:cellForRowAtIndexPath:

Stanford CS193p!
Fall 2013

UITableView
Plain Style

Table Cell

Table Footer

Table Header

Section Header

Section Footer

Section

Stanford CS193p!
Fall 2013

UITableView
Grouped Style

Table Cell

Table Footer

Table Header

Section Header

Section Footer

Section

Stanford CS193p!
Fall 2013

Sections or Not

SectionsNo Sections

Stanford CS193p!
Fall 2013

Cell Type

BasicSubtitle Right Detail Left Detail
UITableViewCellStyleSubtitle UITableViewCellStyleDefault UITableViewCellStyleValue1 UITableViewCellStyleValue2

Stanford CS193p!
Fall 2013

The class UITableViewController
provides a convenient packaging of

a UITableView in an MVC.
It’s mostly useful when the UITableView is

going to fill all of self.view!
(in fact self.view in a UITableViewController!

is the UITableView).

Stanford CS193p!
Fall 2013

You can add an MVC like this
by dragging it into your
storyboard from here.

Stanford CS193p!
Fall 2013

 Controller: UITableViewController (subclass of)!
 View: UITableView

Stanford CS193p!
Fall 2013

Like any other View Controller,!
you’ll want to set its class.

Stanford CS193p!
Fall 2013

Make sure you set the superclass to
UITableViewController …

Stanford CS193p!
Fall 2013

… otherwise it won’t make sense
to set it as the class here.

Stanford CS193p!
Fall 2013

Your UITableViewController subclass
will also serve as the!

UITableView’s dataSource and delegate!
(more on this in a moment).

You can see that if you right-click
the Controller here.

dataSource and delegate
@propertys

If you use UITableView without UITableViewController, you’ll have to wire these up yourself.

Stanford CS193p!
Fall 2013

You can edit
attributes of the
UITableView by
inspecting it.

One important attribute is the
Plain vs. Grouped style …

Stanford CS193p!
Fall 2013

Grouped

Another important attribute is
Dynamic versus Static …

Stanford CS193p!
Fall 2013

Static

Static means that these cells are set
up in the storyboard only.!

You can edit them however you want
including dragging buttons, etc., into them!

(and wiring up outlets).

Stanford CS193p!
Fall 2013

A more interesting table,
however, is a Dynamic one …

Stanford CS193p!
Fall 2013

… which we almost always
use in Plain style.

Stanford CS193p!
Fall 2013

These cells are now templates which will
be repeated for however many rows are needed

to display the data in MVC’s Model.
We are allowed to have multiple,

different prototype cells, but
usually we only have one.

Stanford CS193p!
Fall 2013

Each of these rows is a UIView.!
A subclass of UITableViewCell to be exact.

If you wanted to create an outlet to something you drag into one
of these prototypes, you’d have to subclass UITableViewCell, set its

class in the Identity Inspector, and wire up to that.!
That’s a little bit advanced for us right now!

Stanford CS193p!
Fall 2013

You can ctrl-drag from a prototype to create a segue.!
That segue will happen when any cell in the table is clicked on.!

We’ll see how to tell which cell was clicked in prepareForSegue:sender: later.

Stanford CS193p!
Fall 2013

You can also inspect a cell.

For example, you can set the cell style.

Stanford CS193p!
Fall 2013

You can also set a symbol to
appear on the right of the cell.

This one’s sort of special …

Subtitle cell style.

Stanford CS193p!
Fall 2013

The most important attribute!
of a UITableViewCell prototype,
however, is this Reuse Identifier.

… we’ll talk about the code behind this later.

Stanford CS193p!
Fall 2013

Put a string here that succinctly
describes what this cell displays.

We will then use it in our UITableViewDataSource
code to let the table view find this prototype!

(so it can duplicate it for each row).

Stanford CS193p!
Fall 2013

UITableView Protocols
 How do we connect to all this stuff in our code?!

Via the UITableView‘s dataSource and delegate.!
 The delegate is used to control how the table is displayed.!
 The dataSource provides the data what is displayed inside the cells.!

 UITableViewController
Automatically sets itself as its UITableView’s delegate & dataSource.!
!
Also has a property pointing to its UITableView:!
@property (nonatomic, strong) UITableView *tableView;
 (this property is actually == self.view in UITableViewController!)

Stanford CS193p!
Fall 2013

UITableViewDataSource
Important dataSource methods

We have to implement these 3 to be a “dynamic” (arbitrary number of rows) table …!
 How many sections in the table?!
 How many rows in each section?!
 Give me a UITableViewCell to use to draw each cell at a given row in a given section.!
!
Let’s cover the last one first (since the first two are very straightforward) ...

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

}

In a static table, you do not need to implement this method !
(though you can if you want to ignore what’s in the storyboard).

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

}

NSIndexPath is just an object with two important
properties for use with UITableView: row and section.

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

// get a cell to use (instance of UITableViewCell)
// set @propertys on the cell to prepare it to display

}

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

// set @propertys on the cell to prepare it to display

}

UITableViewCell *cell;
cell = [self.tableView dequeueReusableCellWithIdentifier:@“Flickr Photo Cell”

forIndexPath:indexPath];

This MUST match what is in your storyboard if
you want to use the prototype you defined there!

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

// set @propertys on the cell to prepare it to display

}

UITableViewCell *cell;
cell = [self.tableView dequeueReusableCellWithIdentifier:@“Flickr Photo Cell”

forIndexPath:indexPath];

The cells in the table are actually reused.!
When one goes off-screen, it gets put into a “reuse pool.”!

The next time a cell is needed, one is grabbed from the reuse pool if available.!
If none is available, one will be put into the reuse pool if there’s a prototype in the storyboard.!

Otherwise this dequeue method will return nil.

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

}

UITableViewCell *cell;
cell = [self.tableView dequeueReusableCellWithIdentifier:@“Flickr Photo Cell”

forIndexPath:indexPath];
cell.textLabel.text = [self getMyTitleForRow:indexPath.row inSection:indexPath.section];
return cell;

There are obviously other things you
can do in the cell besides setting its text

(detail text, image, checkmark, etc.).

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

Stanford CS193p!
Fall 2013

UITableViewDataSource
How do we control what is drawn in each cell in a dynamic table?

Each row is drawn by its own instance of UITableViewCell (a UIView subclass).
Here is the UITableViewDataSource method to get that cell for a given row in a section …

}

UITableViewCell *cell;
cell = [self.tableView dequeueReusableCellWithIdentifier:@“Flickr Photo Cell”

forIndexPath:indexPath];
cell.textLabel.text = [self getMyTitleForRow:indexPath.row inSection:indexPath.section];
return cell;

- (UITableViewCell *)tableView:(UITableView *)sender
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

See how we are using indexPath.section and indexPath.row
to get Model information to set up this cell.

Stanford CS193p!
Fall 2013

UITableViewDataSource
How does a dynamic table know how many rows there are?!

And how many sections, too, of course?!
Via these two UITableViewDataSource methods …!
- (NSInteger)numberOfSectionsInTableView:(UITableView *)sender; !
- (NSInteger)tableView:(UITableView *)sender numberOfRowsInSection:(NSInteger)section; !

Number of sections is 1 by default!
In other words, if you don’t implement numberOfSectionsInTableView:, it will be 1.!

No default for tableView:numberOfRowsInSection:!
This is a required method in this protocol (as is tableView:cellForRowAtIndexPath:).!

What about a static table?!
Do not implement these dataSource methods for a static table.!
UITableViewController will take care of that for you.

Stanford CS193p!
Fall 2013

UITableViewDataSource
There are a number of other methods in this protocol!

But we’re not going to cover them today.!
They are mostly about getting the headers and footers for sections.!
And about keeping the Model in sync with table edits (moving/deleting/inserting rows).

Stanford CS193p!
Fall 2013

UITableViewDelegate
All of the above was the UITableView’s dataSource!

But UITableView has another protocol-driven delegate called its delegate.!

The delegate controls how the UITableView is displayed!
Not what it displays (that’s the dataSource’s job).!

Common for dataSource and delegate to be the same object!
Usually the Controller of the MVC in which the UITableView is part of the View.!
This is the way UITableViewController sets it up for you.!

The delegate also lets you observe what the table view is doing!
The classic “will/did” sorts of things.!
An important one is “user did select a row.”!
Usually we don’t need this because we simply segue when a row is touched.!
But there are some occasions where it will be useful …

Stanford CS193p!
Fall 2013

UITableView “Target/Action”
 UITableViewDelegate method sent when row is selected!

This is sort of like “table view target/action” (only needed if you’re not segueing, of course).!
On the iPad, where the table might be on screen with what it updates, you might need this.!
- (void)tableView:(UITableView *)sender didSelectRowAtIndexPath:(NSIndexPath *)path !
{ !
 // go do something based on information about my Model!
 // corresponding to indexPath.row in indexPath.section
}

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

UITableView Detail Disclosure
Remember the little circled i?
Clicking on this will not segue.

Instead it will invoke this method in the UITableViewDelegate protocol …
- (void)tableView:(UITableView *)sender

accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{

// Do something related to the row at indexPath,
// but not the primary action associated with touching the row

}

Stanford CS193p!
Fall 2013

UITableViewDelegate
Lots and lots of other delegate methods!
will/did methods for both selecting and deselecting rows.!
Providing UIView objects to draw section headers and footers.!
Handling editing rows (moving them around with touch gestures).!
willBegin/didEnd notifications for editing (i.e. removing/moving) rows.!
Copying/pasting rows.

Stanford CS193p!
Fall 2013

You can segue from a row
without implementing that
delegate method though …

Stanford CS193p!
Fall 2013

If you put these in a navigation
controller, you’d choose push here.

Stanford CS193p!
Fall 2013

Let’s take a look at
prepareForSegue:sender:

for this segue…

Stanford CS193p!
Fall 2013

UITableView Segue
The sender of prepareForSegue:sender: is the UITableViewCell!
Use the important method indexPathForCell: to find out the indexPath of the row that’s segueing.!
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 NSIndexPath *indexPath = [self.tableView indexPathForCell:sender];
 // prepare segue.destinationController to display based on information
 // about my Model corresponding to indexPath.row in indexPath.section
}

Stanford CS193p!
Fall 2013

UITableView Spinner
UITableViewController has an “activity indicator” built in
You get it via this property in UITableViewController …
@property (strong) UIRefreshControl *refreshControl;
Start it with …
- (void)beginRefreshing;
Stop it with …
- (void)endRefreshing;

Also, users can “pull down” on the
table view and the refresh control will

send its action to its target.

It appears here at the top
of the table view.

Stanford CS193p!
Fall 2013

Turn it on here in the Attributes
Inspector while inspecting a
UITableViewController.

Stanford CS193p!
Fall 2013

It will appear here in the
Document Outline.

Stanford CS193p!
Fall 2013

If you want to let users!
“pull down” to refresh the table,!

 ctrl-drag to your code …

Stanford CS193p!
Fall 2013

… beginRefreshing, do
something in another thread, then
endRefreshing when complete.

Stanford CS193p!
Fall 2013

UITableView
What if your Model changes?!
- (void)reloadData; !
Causes the table view to call numberOfSectionsInTableView: and numberOfRowsInSection:!
 all over again and then cellForRowAtIndexPath: on each visible cell.!
Relatively heavyweight, but if your entire data structure changes, that’s what you need.!
If only part of your Model changes, there are lighter-weight reloaders, for example ...!
- (void)reloadRowsAtIndexPaths:(NSArray *)indexPaths !
 withRowAnimation:(UITableViewRowAnimation)animationStyle; !

There are dozens of other methods in UITableView!
Setting headers and footers for the entire table.!
Controlling the look (separator style and color, default row height, etc.).!
Getting cell information (cell for index path, index path for cell, visible cells, etc.).!
Scrolling to a row.!
Selection management (allows multiple selection, getting the selected row, etc.).!
Moving, inserting and deleting rows, etc.

Stanford CS193p!
Fall 2013

Universal Applications
A “Universal” Application will run on both iPhone and iPad!

It might look different on each.!
But it’s a single binary image (i.e. it’s one app, not two).!
Two different storyboards.!

How to create one!
When you create the project, pick Universal instead of iPhone or iPad.!
If you have an existing iPhone- or iPad-only project, you must edit your Project Settings …

Stanford CS193p!
Fall 2013

Click here to look at
your Project Settings.

Then click here to
change your application

to Universal.

Stanford CS193p!
Fall 2013

Generally
recommend choosing
“Don’t Copy” here.

Stanford CS193p!
Fall 2013

Now create an
iPad storyboard!
using New File …

Stanford CS193p!
Fall 2013

Storyboards
are under User

Interface.

Stanford CS193p!
Fall 2013

Pick appropriate device.

Stanford CS193p!
Fall 2013

Find your existing
storyboard and put
the new one in the

same place.Put in desired group.

Pick a good name.

Stanford CS193p!
Fall 2013

Here’s your!
iPad storyboard.

Stanford CS193p!
Fall 2013

To set it as the !
storyboard to use on iPad,!

click on iPad here.

Here’s your!
iPad storyboard.

Stanford CS193p!
Fall 2013

Then choose your newly-created
iPad storyboard.

Here’s your!
iPad storyboard.

Stanford CS193p!
Fall 2013

Universal Applications
iPad user-interface idioms

The iPad has more screen real estate, so it can present MVCs in a couple of other ways.

Split View Popover

Stanford CS193p!
Fall 2013

Universal Applications
How do I figure out “am I on an iPad?”!
BOOL iPad = ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad); !
Use this sparingly!!
!
Checking other things (like whether you are in a split view or popover) might be better design.!
!
Or maybe check to see if your MVC or another MVC are “on screen” now!
 (because with more screen real estate, iPad can often have multiple MVCs showing at once).!
Remember this? if (self.view.window == nil) { /* I am not on screen right now */ }

Stanford CS193p!
Fall 2013

UISplitViewController

This is generally what a Split View looks like.!
Let’s see how to create and configure one ...

Master View ControllerMaster View Controller

Detail View ControllerDetail View Controller

Stanford CS193p!
Fall 2013

UISplitViewController
Designed to be at the top-level of your storyboard!

Don’t try to put it inside a tab bar controller or navigation controller!!
But you can put either of those inside either side of the split view.!

Simple to add to your storyboard!
Just drag it out (and usually delete the “free” Master and Detail it gives you).!
If you don’t see a Split View in your Object Palette, then you’re not editing an iPad storyboard.!
Then ctrl-drag to each of the two sides (Master and Detail) of the split view.

Stanford CS193p!
Fall 2013

UISplitViewController
Accessing the Master and Detail MVCs from code!

All UIViewControllers know the UISplitViewController they are contained in (if in one):!
@property (strong) UISplitViewController *splitViewController; !
e.g. if (self.splitViewController) { /* I am in a UISplitViewController */ } !

!
The UISplitViewController has a property which is an array containing Master and Detail:!
@property (copy) NSArray *viewControllers; // index 0 is Master, 1 is Detail!
This property is not readonly, so you can change the Master & Detail of a Split View.!
The array is immutable though, so you must set both Master & Detail together at once.!
Usually you set this by ctrl-dragging in your storyboard though, not in code.!

!

e.g. A Master VC wants to get ahold of the Detail VC of the Split View both are in …!
UIViewController *detailVC = self.splitViewController.viewControllers[1]; !
If the Master VC is not in a Split View, this would nicely return nil.!

Stanford CS193p!
Fall 2013

UISplitViewControllerDelegate
 UISplitViewController requires its delegate to be set!

Or, at least, if you don’t set it, then in portrait mode, the Master will be inaccessible.!
@property (assign) id <UISplitViewControllerDelegate> delegate; !
By the way, “assign” above is like “weak” except it doesn’t set to nil when it leaves the heap!!
Seems dangerous (and it can be), except that a Controller is almost always the delegate.!
And a Controller is unlikely to leave the heap before elements of the View do.!

You must set this delegate very early!!
Probably in awakeFromNib.!
e.g., UISplitViewController starts sending its delegate methods way before viewDidLoad.!
And then, unfortunately, when its delegate methods get sent to you, your outlets aren’t set yet!!
This can make being a UISplitViewController’s delegate a real pain.!

What is the delegate’s responsibility?!
To control how the Master and Detail are presented when device rotation occurs …!

Stanford CS193p!
Fall 2013

Never hide the left side (Master) behind a bar button
- (BOOL)splitViewController:(UISplitViewController *)sender

shouldHideViewController:(UIViewController *)master
inOrientation:(UIInterfaceOrientation)orientation

{
return NO; // never hide it

}

UISplitViewControllerDelegate

UISplitViewControllerDelegate
Hide Master in portrait orientation only (the default)

- (BOOL)splitViewController:(UISplitViewController *)sender
shouldHideViewController:(UIViewController *)master

inOrientation:(UIInterfaceOrientation)orientation
{

return UIInterfaceOrientationIsPortrait(orientation);
}

This bar button will
cause the Master to

slide out!

UISplitViewControllerDelegate
Hide Master in portrait orientation only (the default)

- (BOOL)splitViewController:(UISplitViewController *)sender
shouldHideViewController:(UIViewController *)master

inOrientation:(UIInterfaceOrientation)orientation
{

return UIInterfaceOrientationIsPortrait(orientation);
}

UISplitViewControllerDelegate
Hide Master in portrait orientation only (the default)

- (BOOL)splitViewController:(UISplitViewController *)sender
shouldHideViewController:(UIViewController *)master

inOrientation:(UIInterfaceOrientation)orientation
{

return UIInterfaceOrientationIsPortrait(orientation);
}

Stanford CS193p!
Fall 2013

UISplitViewControllerDelegate
If you forget to set the delegate, you’ll get this ...

No button to slide the
Master on screen!

Stanford CS193p!
Fall 2013

UISplitViewControllerDelegate
Split View helps you by providing that bar button

This gets called in your delegate when the master gets hidden …
- (void)splitViewController:(UISplitViewController *)sender

willHideViewController:(UIViewController *)master
withBarButtonItem:(UIBarButtonItem *)barButtonItem

forPopoverController:(UIPopoverController *)popover
{

barButtonItem.title = master.title;
// this next line would only work in the Detail
// and only if it was in a UINavigationController
self.navigationItem.leftBarButton = barButtonItem;

}

See? You are being provided
the bar button item.!

You just need to put it on
screen somewhere.

Stanford CS193p!
Fall 2013

UISplitViewControllerDelegate
When it's time for the bar button to go away ...!

This gets called in your delegate when the master reappears …!
- (void)splitViewController:(UISplitViewController *)sender
 willShowViewController:(UIViewController *)master
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem
{
 // this next line would only work in the Detail
 // and only if it was in a UINavigationController
 self.navigationItem.leftBarButton = nil;
}

Stanford CS193p!
Fall 2013

UISplitViewController
Updating the Detail when the Master is touched?!

There are 2 choices for how to do this: Target/Action or Replace Segue!

Target/Action!
Example (code in the Master view controller) …!
- (IBAction)doit
{
 id detailViewController = self.splitViewController.viewControllers[1];
 [detailViewController setSomeProperty:…]; // might want some Introspection first
}

Replace Segue (entirely replaces the Detail view controller)!
Remember, segues always instantiate a view controller (split view stops pointing to old one).!
Can Replace either side, but much more common to replace the right side (since it’s the “detail”).!
Be careful! You might lose the UIBarButtonItem used for revealing the hidden Master!!
 (you’d need to be sure to put it back into the newly instantiated view controller)

Stanford CS193p!
Fall 2013

Popovers

Here is a popover with an MVC
inside it whose View is a table
view containing some equations.

Stanford CS193p!
Fall 2013

Popovers
UIPopoverController is not, itself, a UIViewController

Instead it has a @property that holds the UIViewController that is inside it …!
@property (nonatomic, strong) UIViewController *contentViewController; !
This is usually wired up in a storyboard …

Stanford CS193p!
Fall 2013

Popovers
Creating a Popover Segue in your Storyboard!

Just drag from the UI element you want to cause the popover to the scene you want to pop up.!
!
In your prepareForSegue:sender:, the argument will be isKindOf:UIStoryboardPopoverSegue.!
And UIStoryboardPopoverSegue has a @property you can use to get the UIPopoverController:!
- (UIPopoverController *)popoverController;
!
Example:!
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if ([segue isKindOfClass:[UIStoryboardPopoverSegue class]]) {
 UIPopoverController *popoverController =
 ((UIStoryboardPopoverSegue *)segue).popoverController;
 . . .
 }
}

Stanford CS193p!
Fall 2013

Popover
You can also present a popover from code!

Popover has a little arrow that points to what (rectangle or button) brought it up.!
You can specify which directions it is valid to point (and thus where the popover will pop up).!
UIPopoverController *popover =
 [[UIPopoverController alloc] initWithContentViewController:myPoppedUpVC];
[popover presentPopoverFromRect:(CGRect)aRect // little arrow points to aRect in view‘s coords
 inView:(UIView *)view
 permittedArrowDirections:(UIPopoverArrowDirection)direction
 animated:(BOOL)flag];
... or (points to a bar button item) …!
[popover presentPopoverFromBarButtonItem:(UIBarButtonItem *)barButtonItem
 permittedArrowDirections:(UIPopoverArrowDirection)direction
 animated:(BOOL)flag;
!
* the “casts” on the arguments above are only for educational purposes, they are not required

Stanford CS193p!
Fall 2013

Popover
But don’t forget to keep a strong pointer to the popover controller!!

Example: a target/action method attached to a UIBarButtonItem that presents a popover …!
- (IBAction)presentPopover:(UIBarButtonItem *)item !
{ !
 UIPopoverController *pop = [[UIPopoverController alloc] initWithViewController:vc]; !
 [pop presentPopoverFromBarButtonItem:item …];
} !
The above is bad because there is no strong pointer kept to the UIPopoverController!

Stanford CS193p!
Fall 2013

Popover
But don’t forget to keep a strong pointer to the popover controller!!

Example: a target/action method attached to a UIBarButtonItem that presents a popover …!
- (IBAction)presentPopover:(UIBarButtonItem *)item
{
 if (!self.popover) {
 self.popover = [[UIPopoverController alloc] initWithViewController:vc];
 [self.popover presentPopoverFromBarButtonItem:item …];
 }
}
// then set self.popover to nil when the popover is dismissed at a later time!
Speaking of which ... how do we dismiss a popover (or find out that the user has dismissed it)?

Stanford CS193p!
Fall 2013

Popover
The user dismisses a popover by touching outside of it!

Unless the user touches in one of the views in this array property in UIPopoverController:!
@property (copy) NSArray *passthroughViews; !

Dismissing a popover from code!
UIPopoverController method:!
- (void)dismissPopoverAnimated:(BOOL)animated; !

Finding out that the user dismissed the popover!
UIPopoverController has a delegate too and it will be sent this message:!
- (void)popoverControllerDidDismissPopover:(UIPopoverController *)sender; !
This is only sent if the user dismisses the popover.!

Stanford CS193p!
Fall 2013

Demo
Shutterbug!
UITableView !
Flickr!
Universal Application!
UISplitViewController !
UIRefreshControl !
GCD!
No Popover, sorry, but you will not be asked to do that in your homework assignment.

Stanford CS193p!
Fall 2013

Coming Up
Homework!

Due next Wednesday.!

Friday!
Stanford Only Review Section!

Next Week!
Core Data (Object-Oriented Database)!
Maybe some Multitasking API

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Agenda
Core Data!
Storing your Model permanently in an object-oriented database.!

Homework!
Assignment 5 due Wednesday.!
Final homework (Assignment 6) will be assigned Wednesday, due the next Wednesday.!

Wednesday!
Final Project Requirements!
Core Data and UITableView!
Core Data Demo!

Next Week!
Multitasking!
Advanced Segueing!
Map Kit?

Stanford CS193p!
Fall 2013

Core Data
Database!
Sometimes you need to store large amounts of data or query it in a sophisticated manner.!
But we still want it to be object-oriented objects!!

Enter Core Data!
Object-oriented database.!
Very, very powerful framework in iOS (we will only be covering the absolute basics).!

It’s a way of creating an object graph backed by a database!
Usually backed by SQL (but also can do XML or just in memory).!

How does it work?!
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using @propertys on those objects.!
Let’s get started by creating that visual map …

Stanford CS193p!
Fall 2013

Get started with Core Data!
by creating a Data Model!

using New File …

Stanford CS193p!
Fall 2013

This
template.

This section. Don’t accidentally pick this one.

Stanford CS193p!
Fall 2013

Name of the Data Model!
(the visual map between classes

and database Entities).

Stanford CS193p!
Fall 2013

The Data Model file.!
Sort of like a storyboard for databases.

Stanford CS193p!
Fall 2013

Attributes

Entities

The Data Model consists of ...

… and Fetched Properties!
(but we’re not going to talk about them).

Relationships

Stanford CS193p!
Fall 2013

Click here to add an Entity.

Stanford CS193p!
Fall 2013

Then type its name here.!
We’ll call this first Entity “Photo”.!
It will represent a database entry

about a photo.

An Entity will appear in our code as an
NSManagedObject (or subclass thereof).

Entities are analogous to “classes”.

Stanford CS193p!
Fall 2013

Now we will add some Attributes.!
We’ll start with the photo’s title.!
Click here to add an Attribute.

Stanford CS193p!
Fall 2013

Notice that we have an error.!
That’s because our Attribute needs a type.

We’ll call this Attribute “title”.

Then edit the name of the Attribute here.

Attributes are analogous to “properties”.

Stanford CS193p!
Fall 2013

Set the type of the title Attribute.!
All Attributes are objects.!

Numeric ones are NSNumber.!
Boolean is also NSNumber.!
Binary Data is NSData.!

Date is NSDate.!
String is NSString.!

Don’t worry about Transformable.
Attributes are accessed on our

NSManagedObjects via the methods
valueForKey: and setValue:forKey:.!
Or we’ll also see how we can access

Attributes as @propertys.

Stanford CS193p!
Fall 2013

No more error!

Stanford CS193p!
Fall 2013

Here are a whole bunch
more Attributes.

You can see your Entities and Attributes in
graphical form by clicking here.

Stanford CS193p!
Fall 2013

This is the same thing we were just
looking at, but in a graphical view.

Stanford CS193p!
Fall 2013

Let’s add another Entity.

Stanford CS193p!
Fall 2013

These can be dragged around
and positioned around the

center of the graph.

And set its name.

A graphical version will appear.

Stanford CS193p!
Fall 2013

Attributes can be added in
the graphical editor too.

Stanford CS193p!
Fall 2013

We can edit the name of an
attribute directly in this box …

… or by bringing up the!
Attributes Inspector …

Stanford CS193p!
Fall 2013

There are a number of
advanced features you can

set on an Attribute …

… but we’re just going
to set its type.

Stanford CS193p!
Fall 2013

Similar to outlets and actions,
we can ctrl-drag to create

Relationships between Entities.

Stanford CS193p!
Fall 2013

A Relationship is analogous to a !
pointer to another object”!
(or NSSet of other objects).

Stanford CS193p!
Fall 2013

From a Photo’s perspective,!
this Relationship to a Photographer is

“who took” the Photo …

… so we’ll call the Relationship
“whoTook” on the Photo side.

Stanford CS193p!
Fall 2013

A Photographer can take many
Photos, so we’ll call this Relationship
“photos” on the Photographer side.

See how Xcode notes the inverse
relationship between photos and whoTook.

Stanford CS193p!
Fall 2013

We also need to note that there can
be many Photos per Photographer.

Stanford CS193p!
Fall 2013

The type of this Relationship in our
Objective-C code will be NSSet

(since it is a “to many” Relationship).

The type of this Relationship in our
Objective-C code will be an

NSManagedObject (or a subclass thereof).

The double arrow here means!
a “to many” Relationship!

(but only in this direction).

The Delete Rule says
what happens to the

pointed to Photos if we
delete this Photographer.

Nullify means “set the
whoTook pointer to nil”.

Stanford CS193p!
Fall 2013

Core Data
There are lots of other things you can do!
But we are going to focus on creating Entities, Attributes and Relationships.!

So how do you access all of this stuff in your code?!
You need an NSManagedObjectContext.!
It is the hub around which all Core Data activity turns.!

How do I get one?!
There are two ways ...!
1. Create a UIManagedDocument and ask for its managedObjectContext (a @property).!
2. Click the “Use Core Data” button when you create a project (only works with certain templates)!
 (then your AppDelegate will have a managedObjectContext @property).!
If you study what the template (e.g. Master-Detail template) does, you’ll get an idea how it works.!
We’re going to focus on doing the first one.

Stanford CS193p!
Fall 2013

UIManagedDocument
 UIManagedDocument !

It inherits from UIDocument which provides a lot of mechanism for the management of storage.!
If you use UIManagedDocument, you’ll be on the fast-track to iCloud support.!
Think of a UIManagedDocument as simply a container for your Core Data database.!

Creating a UIManagedDocument
NSFileManager *fileManager = [NSFileManager defaultManager];
NSURL *documentsDirectory = [[fileManager URLsForDirectory:NSDocumentDirectory
 inDomains:NSUserDomainMask] firstObject];!
NSString *documentName = @“MyDocument”;
NSURL *url = [documentsDirectory URLByAppendingPathComponent:documentName];
UIManagedDocument *document = [[UIManagedDocument alloc] initWithFileURL:url];
This creates the UIManagedDocument instance, but does not open nor create the underlying file.

Stanford CS193p!
Fall 2013

UIManagedDocument
How to open or create a UIManagedDocument!
First, check to see if the UIManagedDocument’s underlying file exists on disk …!
BOOL fileExists = [[NSFileManager defaultManager] fileExistsAtPath:[url path]];!

… if it does, open the document using ...!
[document openWithCompletionHandler:^(BOOL success) { /* block to execute when open */ }]; !
… if it does not, create the document using ...!
[document saveToURL:url // could (should?) use document.fileURL property here
 forSaveOperation:UIDocumentSaveForCreating
 competionHandler:^(BOOL success) { /* block to execute when create is done */ }];

What is that completionHander?!
Just a block of code to execute when the open/save completes.!
That’s needed because the open/save is asynchronous (i.e. happens on its own queue).!
Do not ignore this fact!

Stanford CS193p!
Fall 2013

UIManagedDocument
Example!
self.document = [[UIManagedDocument alloc] initWithFileURL:(URL *)url];
if ([[NSFileManager defaultManager] fileExistsAtPath:[url path]]) {
 [document openWithCompletionHandler:^(BOOL success) {
 if (success) [self documentIsReady];
 if (!success) NSLog(@“couldn’t open document at %@”, url);
 }];
} else {
 [document saveToURL:url forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success) {
 if (success) [self documentIsReady];
 if (!success) NSLog(@“couldn’t create document at %@”, url);
 }];
}
// can’t do anything with the document yet (do it in documentIsReady).

Stanford CS193p!
Fall 2013

UIManagedDocument
Once document is open/created, you can start using it!
But you might want to check the documentState when you do ...!
- (void)documentIsReady
{
 if (self.document.documentState == UIDocumentStateNormal) {
 // start using document
 }
}

Other documentStates!
UIDocumentStateClosed (you haven’t done the open or create yet)!
UIDocumentStateSavingError (success will be NO in completion handler)!
UIDocumentStateEditingDisabled (temporary situation, try again)!
UIDocumentStateInConflict (e.g., because some other device changed it via iCloud)!
We don’t have time to address these (you can ignore in homework), but know that they exist.

Stanford CS193p!
Fall 2013

UIManagedDocument
Okay, document is ready to use, now what?!
Now you can get a managedObjectContext from it and use it to do Core Data stuff!!
- (void)documentIsReady
{
 if (self.document.documentState == UIDocumentStateNormal) { !
 NSManagedObjectContext *context = self.document.managedObjectContext;
 // start doing Core Data stuff with context
 }
} !
Okay, just a couple of more UIManagedDocument things before we start using that context …

Stanford CS193p!
Fall 2013

UIManagedDocument
Saving the document!
UIManagedDocuments AUTOSAVE themselves!!
However, if, for some reason you wanted to manually save (asynchronous!) …!
[document saveToURL:document.fileURL
 forSaveOperation:UIDocumentSaveForOverwriting
 competionHandler:^(BOOL success) { /* block to execute when save is done */ }];
Note that this is almost identical to creation (just UIDocumentSaveForOverwriting is different).!
This is a UIKit class and so this method must be called on the main queue.

Closing the document!
Will automatically close if there are no strong pointers left to it.!
But you can explicitly close with (asynchronous!) …!
[self.document closeWithCompletionHandler:^(BOOL success) {
 if (!success) NSLog(@“failed to close document %@”, self.document.localizedName);
}]; !
UIManagedDocument’s localizedName method …
@property (strong) NSString *localizedName; // suitable for UI (but only valid once saved)

Stanford CS193p!
Fall 2013

UIManagedDocument
Multiple instances of UIManagedDocument on the same document!
This is perfectly legal, but understand that they will not share an NSManagedObjectContext.!
Thus, changes in one will not automatically be reflected in the other.!
!
You’ll have to refetch in other UIManagedDocuments after you make a change in one.!
!
Conflicting changes in two different UIManagedDocuments would have to be resolved by you!!
It’s exceedingly rare to have two “writing” instances of UIManagedDocument on the same file.!
But a single writer and multiple readers? Less rare. But you need to know when to refetch.!
!
You can watch (via “radio station”) other documents’ managedObjectContexts (then refetch).!
Or you can use a single UIManagedDocument instance (per actually document) throughout.

Stanford CS193p!
Fall 2013

NSNotification
How would you watch a document’s managedObjectContext?!
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [center addObserver:self
 selector:@selector(contextChanged:)
 name:NSManagedObjectContextDidSaveNotification
 object:document.managedObjectContext]; // don’t pass nil here!
}
- (void)viewWillDisappear:(BOOL)animated
{
 [center removeObserver:self
 name:NSManagedObjectContextDidSaveNotification
 object:document.managedObjectContext];
 [super viewWillDisappear:animated];
}

Stanford CS193p!
Fall 2013

NSNotification
 NSManagedObjectContextDidSaveNotification !

- (void)contextChanged:(NSNotification *)notification
{
 // The notification.userInfo object is an NSDictionary with the following keys:
 NSInsertedObjectsKey // an array of objects which were inserted
 NSUpdatedObjectsKey // an array of objects whose attributes changed
 NSDeletedObjectsKey // an array of objects which were deleted
} !

Merging changes!
If you get notified that another NSManagedObjectContext has changed your database …!
… you can just refetch (if you haven’t changed anything in your NSMOC, for example).!
… or you can use the NSManagedObjectContext method:!
- (void)mergeChangesFromContextDidSaveNotification:(NSNotification *)notification;

Stanford CS193p!
Fall 2013

Core Data
Okay, we have an NSManagedObjectContext, now what?!
We grabbed it from an open UIManagedDocument’s managedObjectContext @property.!
Now we use it to insert/delete objects in the database and query for objects in the database.

Stanford CS193p!
Fall 2013

Core Data
Inserting objects into the database!
NSManagedObjectContext *context = aDocument.managedObjectContext;
NSManagedObject *photo =
 [NSEntityDescription insertNewObjectForEntityForName:@“Photo”
 inManagedObjectContext:context];
!
Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.!
!
An instance of NSManagedObject is a manifestation of an Entity in our Core Data Model*.!
Attributes of a newly-inserted object will start out nil (unless you specify a default in Xcode).!
!
* i.e., the Data Model that we just graphically built in Xcode!!

Stanford CS193p!
Fall 2013

Core Data
How to access Attributes in an NSManagedObject instance!
You can access them using the following two NSKeyValueCoding protocol methods ...!
- (id)valueForKey:(NSString *)key; !
- (void)setValue:(id)value forKey:(NSString *)key; !
You can also use valueForKeyPath:/setValue:forKeyPath: and it will follow your Relationships!!

The key is an Attribute name in your data mapping!
For example, @“thumbnailURL” or @“title”.!

The value is whatever is stored (or to be stored) in the database!
It’ll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).!
Note that all values are objects (numbers and booleans are NSNumber objects).!
Binary data values are NSData objects.!
Date values are NSDate objects.!
“To-many” mapped relationships are NSSet objects (or NSOrderedSet if ordered).!
Non-“to-many” relationships are NSManagedObjects.

Stanford CS193p!
Fall 2013

Core Data
Changes (writes) only happen in memory, until you save !
Remember, UIManagedDocument autosaves.!
When the document is saved, the context is saved and your changes get written to the database.!
UIManagedDocumentDidSaveNotification will be “broadcast” at that point.!
!
Be careful during development where you press “Stop” in Xcode (sometimes autosave is pending).

Stanford CS193p!
Fall 2013

Core Data
But calling valueForKey:/setValue:forKey: is pretty ugly!
There’s no type-checking.
And you have a lot of literal strings in your code (e.g. @“thumbnailURL”)!

What we really want is to set/get using @propertys!!
No problem ... we just create a subclass of NSManagedObject!
The subclass will have @propertys for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).
!
And, as you might imagine, we can get Xcode to generate both the header file @property entries,
 and the corresponding implementation code (which is not @synthesize, so watch out!).

Stanford CS193p!
Fall 2013

Select both Entities.!
We’re going to have Xcode
generate NSManagedObject
subclasses for them for us.

Stanford CS193p!
Fall 2013

Ask Xcode to generate
NSManagedObject
subclasses for our

Entities.

Stanford CS193p!
Fall 2013

Which Data Models to!
generate subclasses for!

(we only have one Data Model).

Stanford CS193p!
Fall 2013

Which Entities to!
generate subclasses for!

(usually we choose all of them).

Stanford CS193p!
Fall 2013

Pick which group you want your
new classes to be stored!

(default is often one directory
level higher, so watch out).

This will make your @propertys be scalars!
(e.g. int instead of NSNumber *) where possible.!

Be careful if one of your Attributes is an NSDate, you’ll
end up with an NSTimeInterval @property.

Stanford CS193p!
Fall 2013

Here are the two subclasses of!
NSManagedObject that were generated:!
Photo.[mh] and Photographer.[mh]

Stanford CS193p!
Fall 2013

@propertys generated for all of our Attributes!!
Now we can use dot notation to access these in code.

Depending on the order Xcode generated Photo and
Photographer, it might not have gotten whoTook’s type

(Photographer *) right (it might say NSManagedObject *).!
If that happens, just generate again.

Stanford CS193p!
Fall 2013

Photographer also got some
convenient methods for!

adding/removing photos that this
Photographer has taken.

Inherits from NSManagedObject.

Stanford CS193p!
Fall 2013

What the heck is @dynamic?!!
!

It says “I do not implement the setter or getter for this
property, but send me the message anyway and I’ll use the

Objective-C runtime to figure out what to do.”!
!

There is a mechanism in the Objective-C runtime to “trap”
a message sent to you that you don’t implement.!

!
NSManagedObject does this and calls!

valueForKey: or setValue:forKey:. Pretty cool.

Now let’s look at Photo.m (the implementation).

These are really here
just to suppress

compiler warnings.

Stanford CS193p!
Fall 2013

Core Data
So how do I access my Entities’ Attributes with dot notation?!
// let’s create an instance of the Photo Entity in the database …!
NSManagedObjectContext *context = document.managedObjectContext; !
Photo *photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo” !
 inManagedObjectContext:context];

// then set the attributes in our Photo using, say, an NSDictionary we got from Flickr …!
e.g. photo.title = [flickrData objectForKey:FLICKR_PHOTO_TITLE];!
// the information will automatically be saved (i.e. autosaved) into our document by Core Data

// now here’s some other things we could do too …!
NSString *myThumbnail = photo.thumbnailURL; !
photo.lastViewedDate = [NSDate date]; !
photo.whoTook = ...; // a Photographer object we created or got by querying!
photo.whoTook.name = @“CS193p Instructor”; // yes, multiple dots will follow relationships!

Stanford CS193p!
Fall 2013

Core Data
What if I want to add code to my NSManagedObject subclass?!
For example, we might want to add a method or two (to the @propertys added by Xcode).!
!
!
!
It would be especially nice to add class methods to create and set up an object in the database!
 (e.g. set all the properties of a Photo or Photographer using an NSDictionary from Flickr).!
Or maybe to derive new @propertys based on ones in the database!
 (e.g. a UIImage based on a URL in the database).

But that could be a problem if we edited Photo.m or Photographer.m ...
Because you might want to modify your schema and re-generate those .h and .m files from Xcode!

To get around this, we need to use an Objective-C feature called “categories”.!
So let’s take a moment to learn about that ...

Stanford CS193p!
Fall 2013

Categories
Categories are an Objective-C syntax for adding to a class ...!
Without subclassing it.
Without even having to have access to the code of the class (e.g. you don’t need its .m).!

Examples!
NSAttributedString’s drawAtPoint: method.
- Added by UIKit (since it’s a UI method) even though NSAttributedString is in Foundation.
NSIndexPath’s row and section properties (used in UITableView-related code).
- Added by UIKit too, even though NSIndexPath is also in Foundation.!

Syntax!
@interface Photo (AddOn)
- (UIImage *)image;
@property (readonly) BOOL isOld;
@end
Categories have their own .h and .m files (usually ClassName+PurposeOfExtension.[mh]).!
Categories cannot have instance variables!

Stanford CS193p!
Fall 2013

Categories
Implementation!
@implementation Photo (AddOn)
- (UIImage *)image // image is not an attribute in the database, but photoURL is
{
 NSURL *imageURL = [NSURL URLWithString:self.photoURL];
 NSData *imageData = [NSData dataWithContentsOfURL:imageURL];
 return [UIImage imageWithData:imageData];
}
- (BOOL)isOld // whether this Photo was uploaded more than a day ago
{
 return [self.uploadDate timeIntervalSinceNow] > -24*60*60;
}
@end
Other examples ... sometimes we add @propertys to an NSManagedObject subclass via categories!
 to make accessing BOOL attributes (which are NSNumbers) more cleanly.
Or we add @propertys to convert NSDatas to whatever the bits represent.
Any class can have a category added to it, but don’t overuse/abuse this mechanism.

Stanford CS193p!
Fall 2013

Categories
Most common category on an NSManagedObject subclass?!
Creation …!
@implementation Photo (Create)
+ (Photo *)photoWithFlickrData:(NSDictionary *)flickrData
 inManagedObjectContext:(NSManagedObjectContext *)context
{
 Photo *photo = ...; // see if a Photo for that Flickr data is already in the database
 if (!photo) {
 photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo”
 inManagedObjectContext:context];
 // initialize the photo from the Flickr data
 // perhaps even create other database objects (like the Photographer)
 }
 return photo;
}
@end

Stanford CS193p!
Fall 2013

Choose New File …then pick
“Objective-C category” from

the Cocoa Touch section.

How do we create a category?

Stanford CS193p!
Fall 2013

Enter the name of the category, as well as!
the name of the class the category’s methods will be added to.

Stanford CS193p!
Fall 2013

Xcode will create both the .h and the .m for the category.!
Remember, you cannot use instance variables in this .m!

We’ll see an example of adding a method to the Photo
class using this category in the demo next lecture.

Stanford CS193p!
Fall 2013

Deletion
Deletion!
Deleting objects from the database is easy (sometimes too easy!)!
[aDocument.managedObjectContext deleteObject:photo]; !
Make sure that the rest of your objects in the database are in a sensible state after this.!
Relationships will be updated for you (if you set Delete Rule for relationship attributes properly).!
And don’t keep any strong pointers to photo after you delete it!!

 prepareForDeletion !
This is another method we sometimes put in a category of an NSManagedObject subclass ...!
@implementation Photo (Deletion)
- (void)prepareForDeletion
{
 // we don’t need to set our whoTook to nil or anything here (that will happen automatically)!
 // but if Photographer had, for example, a “number of photos taken” attribute,!
 // we might adjust it down by one here (e.g. self.whoTook.photoCount--).
}
@end

Stanford CS193p!
Fall 2013

Querying
So far you can ...!
Create objects in the database with insertNewObjectForEntityForName:inManagedObjectContext:.
Get/set properties with valueForKey:/setValue:forKey: or @propertys in a custom subclass.!
Delete objects using the NSManagedObjectContext deleteObject: method.!

One very important thing left to know how to do: QUERY!
Basically you need to be able to retrieve objects from the database, not just create new ones
You do this by executing an NSFetchRequest in your NSManagedObjectContext!

Four important things involved in creating an NSFetchRequest
1. Entity to fetch (required)

4. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors to specify the order in which the array of fetched objects are returned
2. How many objects to fetch at a time and/or maximum to fetch (optional, default: all)

Stanford CS193p!
Fall 2013

Querying
Creating an NSFetchRequest!
We’ll consider each of these lines of code one by one ...
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photo”];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.sortDescriptors = @[sortDescriptor];
request.predicate = ...;

Specifying the kind of Entity we want to fetch!
A given fetch returns objects all of the same Entity.!
You can’t have a fetch that returns some Photos and some Photographers (it’s one or the other).!

Setting fetch sizes/limits!
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000.

Stanford CS193p!
Fall 2013

Querying
 NSSortDescriptor!

When we execute a fetch request, it’s going to return an NSArray of NSManagedObjects.!
NSArrays are “ordered,” so we should specify the order when we fetch.

We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
NSSortDescriptor *sortDescriptor =
 [NSSortDescriptor sortDescriptorWithKey:@“title”
 ascending:YES
 selector:@selector(localizedStandardCompare:)];

The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).!
localizedStandardCompare: is for ordering strings like the Finder on the Mac does (very common).

We give an array of these NSSortDescriptors to the NSFetchRequest because sometimes!
 we want to sort first by one key (e.g. last name), then, within that sort, by another (e.g. first name).!
Examples: @[sortDescriptor] or @[lastNameSortDescriptor, firstNameSortDescriptor]

Stanford CS193p!
Fall 2013

Querying
 NSPredicate !

This is the guts of how we specify exactly which objects we want from the database.!
Predicate formats!
Creating one looks a lot like creating an NSString, but the contents have semantic meaning.
NSString *serverName = @“flickr-5”;
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@“thumbnailURL contains %@”, serverName];

Examples!
@“uniqueId = %@”, [flickrInfo objectForKey:@“id”] // unique a photo in the database
@“name contains[c] %@”, (NSString *) // matches name case insensitively!
@“viewed > %@”, (NSDate *) // viewed is a Date attribute in the data mapping!
@“whoTook.name = %@”, (NSString *) // Photo search (by photographer’s name)!
@“any photos.title contains %@”, (NSString *) // Photographer search (not a Photo search)!
Many more options. Look at the class documentation for NSPredicate.

Stanford CS193p!
Fall 2013

Querying
NSCompoundPredicate !
You can use AND and OR inside a predicate string, e.g. @“(name = %@) OR (title = %@)”!
Or you can combine NSPredicate objects with special NSCompoundPredicates.
NSArray *array = @[predicate1, predicate2];
NSPredicate *predicate = [NSCompoundPredicate andPredicateWithSubpredicates:array];
This predicate is “predicate1 AND predicate2”. Or available too, of course.

Stanford CS193p!
Fall 2013

Advanced Querying
Key Value Coding!
Can actually do predicates like @“photos.@count > 5” (Photographers with more than 5 photos).!
@count is a function (there are others) executed in the database itself.!
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/KeyValueCoding/Articles/CollectionOperators.html.!
By the way, all this stuff (and more) works on dictionaries, arrays and sets too …!
e.g. [propertyListResults valueForKeyPath:@“photos.photo.@avg.latitude”] on Flickr results!
 returns the average latitude of all of the photos in the results (yes, really)!
e.g. @“photos.photo.title.length" would return an array of the lengths of the titles of the photos!

 NSExpression!
Advanced topic. Can do sophisticated data gathering from the database.
No time to cover it now, unfortunately.!
!
If interested, for both NSExpression and Key Value Coding queries, investigate …!
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“…”]; !
[request setResultType:NSDictionaryResultType]; // fetch returns array of dicts instead of NSMO’s!
[request setPropertiesToFetch:@[@“name”, expression, etc.]];

Stanford CS193p!
Fall 2013

Querying
Putting it all together!
Let’s say we want to query for all Photographers ...!
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photographer”];
... who have taken a photo in the last 24 hours ...!
NSDate *yesterday = [NSDate dateWithTimeIntervalSinceNow:-24*60*60]; !
request.predicate = [NSPredicate predicateWithFormat:@“any photos.uploadDate > %@”, yesterday]; !
... sorted by the Photographer’s name ...
request.sortDescriptors = @[[NSSortDescriptor sortDescriptorWithKey:@“name” ascending:YES]];

Stanford CS193p!
Fall 2013

Querying
Executing the fetch!
NSManagedObjectContext *context = aDocument.managedObjectContext; !
NSError *error; !
NSArray *photographers = [context executeFetchRequest:request error:&error]; !
!
Returns nil if there is an error (check the NSError for details).!
Returns an empty array (not nil) if there are no matches in the database.!
Returns an NSArray of NSManagedObjects (or subclasses thereof) if there were any matches.!
You can pass NULL for error: if you don’t care why it fails.!
!
That’s it. Very simple really.

Stanford CS193p!
Fall 2013

Query Results
Faulting!
The above fetch does not necessarily fetch any actual data.!
It could be an array of “as yet unfaulted” objects, waiting for you to access their attributes.!
Core Data is very smart about “faulting” the data in as it is actually accessed.!
For example, if you did something like this ...!
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer %@”, photographer);
}
You may or may not see the names of the photographers in the output!
 (you might just see “unfaulted object”, depending on whether it prefetched them)!
But if you did this ...!
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer named %@”, photographer.name);
}
... then you would definitely fault all the Photographers in from the database.!
That’s because in the second case, you actually access the NSManagedObject’s data.

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Core Data Thread Safety
 NSManagedObjectContext is not thread safe !

Luckily, Core Data access is usually very fast, so multithreading is only rarely needed.!
Usually we create NSManagedObjectContext using a queue-based concurrency model.!
This means that you can only touch a context and its NSMO’s in the queue it was created on.!

Thread-Safe Access to an NSManagedObjectContext!
[context performBlock:^{ // or performBlockAndWait:!
 // do stuff with context in its safe queue (the queue it was created on)!
}]; !
Note that the Q might well be the main Q, so you’re not necessarily getting “multithreaded.”!

Parent Context (advanced)!
Some contexts (including UIManagedDocument ones) have a parentContext (a @property on NSMOC).!
This parentContext will almost always be on a separate queue, but access the same database.!
This means you can performBlock: on it to access the database off the main queue (e.g.).!
But it is still a different context, so you’ll have to refetch in the child context to see any changes.

Stanford CS193p!
Fall 2013

Core Data
There is so much more (that we don’t have time to talk about)!!
Optimistic locking (deleteConflictsForObject:)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)

Stanford CS193p!
Fall 2013

Coming Up
Homework!
Assignment 5 due Wednesday.!
Final homework (Assignment 6) will be assigned Wednesday, due the next Wednesday.!

Wednesday!
Final Project Requirements!
Core Data and UITableView!
Core Data Demo!

Next Week!
Multitasking!
Advanced Segueing!
Map Kit?

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
Final Project Requirements!
Core Data and UITableView!
Core Data Demo!
Photomania

Stanford CS193p!
Fall 2013

Final Project
Proposal due immediately! !
And must be received no later than next Wednesday.!
Send PDF of your proposal to your CA (the one who has graded your latest assignment).!
Proposal must say not only what you are doing, but also what parts of SDK will be featured.!

Project (including Keynote) due on Friday, December 6th.!
Use normal submission process (put the keynote file at the top level where README is).
NO LATE DAYS (last two assignments are the last opportunity to use free late days).!

Required presentation during final exam period!
Thursday, December 12th at 12:15pm in this room.!
2-minute Keynote (not PowerPoint) presentation (more on this in a moment).
1280x720 aspect ratio (not 1024x768 or 800x600).!
!
Alternate presentation time on Thursday, December 5th (w/Keynote due by Tuesday, December 3rd).!
If you need/want the alternate presentation time, let us know immediately (via class staff e-mail).

Stanford CS193p!
Fall 2013

Final Project
Scope is the same as about three weeks of homework!
Luckily, you’ll have about three weeks to do it (counts as approximately 35% of your overall grade).!
P/NC students must pass both homework and final project segments separately.!

Must work on hardware!!
Bring your hardware to final exam to demo to TA (if not used during your presentation).
iPad or iPhone or iPod Touch okay.!

Only iOS SDK code “counts”!
Don’t waste your time writing server-side code
Okay to “simulate” a server-side interaction to make your code demonstrable.

Stanford CS193p!
Fall 2013

Final Project
You’ll be graded on proper use of SDK!
Hackery will count against you. Use good object-oriented programming technique.
Must have at least one feature which was NOT taught in lecture/demo/homework assignment.
Breadth is VERY important. Don’t get stuck down a rathole.
Only need to show depth in one or two areas. Breadth is more important.!

Aesthetics of your user-interface matter!
 (although we do not expect professional graphic designer quality graphics)
Sloppy layouts will be graded down.
Lots of places to get graphics from on the internet.!

Be careful not to get side-tracked on non-iOS-code!
Some students in the past have spent 80% of their time working on
 stuff that didn’t demonstrate their mastery of the class material.
 (e.g. preparing some large database or working on graphics too much, etc.)
In the end, this is an iOS PROGRAMMING course, so we want to see
 how well you can program on this platform.

Stanford CS193p!
Fall 2013

Final Project
Presentation Quality Matters!
A (tiny) portion of your grade will be related to the quality of your presentation.
Not okay to just put up a recording of you or of your application and say nothing.
Being able to make a live presentation is a valuable skill.
Practice your presentation before you show up.
You only get 2 minutes (strictly enforced), so make ‘em count.!

Live demo?!
All iOS 7 devices (iPad2+, iPhone4S, iPhone5) can mirror their screen to the projector here.
Live demos are perilous, as you saw all quarter :), but effective!!
You must, at worst, show screen shots of your application.
Keynote/Quicktime has some tools to “animate” screen shots (better than static).
Video (screen capture) of your app in action can be good also.

Stanford CS193p!
Fall 2013

Sample Proposal
Section 1: What am I doing?!
I will be building a “Shakespeare Director” application.!
It will have the following features:!

A table for choosing a Shakespearean play from a list downloaded from Folio*.!
A custom view for laying out the blocking of a chosen Shakespearean play.!
A dialogue-learning mode.!

* Folio is an on-line database of all of Shakespeare’s works.!
The custom view will be simple (only rectangles and circles with colors for stroke/fill, and text).!
Photos (from Camera or Library) can be put in rectangles in the blocking view.!
The blocking can change from line to line in the dialog (but no more often than that).!
Blocking can be stepped through, line by line, or played back in “time lapse” mode.!
The dialogue-learning mode will step through all the dialog line by line.!
Users can record the dialog for other parts (as prompts for them to learn their own part).!
iPad only.

Stanford CS193p!
Fall 2013

Sample Proposal
Section 2: What parts of iOS will it use?!
UITableView for choosing plays and stepping through dialog!
Custom UITableViewCell prototypes (for dialog, including speaker, blocking instructions)!
Custom UIView with drawRect: for scene-setting!
Camera/Photo Library for putting images in blocking rectangles!
UITextField in a UIPopoverController for text labels in the scene-setting view!
UIPopoverController for choosing stroke and fill color and shape in scene-setting mode!
Scroll view to zoom in/pan around in blocking view!
AVFoundation for record/playback of dialog!
NSTimer for “time lapse playback” of entire play with dialog/blocking linked!
Core Data to store the scene-setting and dialog!

Play entity!
Scene entity!
BlockingElement entity!
LineOfDialog entity!

Printing of blocking to AirPrint printers (this is the NOT COVERED IN LECTURE feature)

Stanford CS193p!
Fall 2013

Sample Proposal
What to notice about this sample proposal?!
Clear description of what the application will do (section 1).!
Clear list of the iOS features that will be used (section 2).!
Lots of breadth (not necessarily that much depth in any one area).!
Clearly delineates the NOT COVERED IN LECTURE feature.!
Specifies platform (iPad only sacrifices breadth, but makes sense for this project).!
It’s creative (it’s not just Matchismo or Top Places recycled).

Stanford CS193p!
Fall 2013

Core Data and UITableView
How to hook these up!
As you can imagine, they were (probably literally) made for each other!!
The magic to doing this? NSFetchedResultsController …

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

Core Data and UITableView
 NSFetchedResultsController !

Simply hooks an NSFetchRequest up to a UITableViewController!
Usually you’ll have an NSFetchedResultsController @property in your UITableViewController.!
It will be hooked up to an NSFetchRequest that returns the data you want to show in your table.!
Then use it to answer all your UITableViewDataSource protocol’s questions!!

For example ...!
- (NSUInteger)numberOfSectionsInTableView:(UITableView *)sender
{
 return [[self.fetchedResultsController sections] count];
}

- (NSUInteger)tableView:(UITableView *)sender numberOfRowsInSection:(NSUInteger)section
{
 return [[[self.fetchedResultsController sections] objectAtIndex:section] numberOfObjects];
}

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

NSFetchedResultsController
Very important method ... objectAtIndexPath:!
NSFetchedResultsController method …!
- (NSManagedObject *)objectAtIndexPath:(NSIndexPath *)indexPath; !
!
Here’s how you would use it in, for example, tableView:cellForRowAtIndexPath: …
- (UITableViewCell *)tableView:(UITableView *)sender
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = ...;
 NSManagedObject *managedObject = // or, e.g., Photo *photo = (Photo *) …
 [self.fetchedResultsController objectAtIndexPath:indexPath];
 // load up the cell based on the properties of the managedObject!
 // of course, if you had a custom subclass, you’d be using dot notation to get them
 return cell;
}

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

How do you create an NSFetchedResultsController?
Just need the NSFetchRequest to drive it (and a NSManagedObjectContext to fetch from).
Let's say we want to show all photos taken by someone with the name photogName in our table:

NSFetchedResultsController *frc = [[NSFetchedResultsController alloc]
 initWithFetchRequest:(NSFetchRequest *)request
 managedObjectContext:(NSManagedObjectContext *)context
 sectionNameKeyPath:(NSString *)keyThatSaysWhichSectionEachManagedObjectIsIn
 cacheName:@“MyPhotoCache”]; // careful!

NSFetchedResultsController

NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photo”];
request.sortDescriptors = @[[NSSortDescriptor sortDescriptorWithKey:@“title” ...]];
request.predicate = [NSPredicate predicateWithFormat:@“whoTook.name = %@”, photogName];

Be sure that any cacheName you use is always associated with exactly the same request.
It’s okay to specify nil for the cacheName (no cacheing of fetch results in that case).
It is critical that the sortDescriptor matches up with the keyThatSaysWhichSection...
The results must sort such that all objects in the first section come first, second second, etc.

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

NSFetchedResultsController
NSFRC also “watches” changes in Core Data and auto-updates table!
Uses a key-value observing mechanism.!
When it notices a change, it sends message like this to its delegate ...
- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath
{
 // here you are supposed call appropriate UITableView methods to update rows!
 // but don’t worry, we’re going to make it easy on you ...
}

Stanford CS193p!
Fall 2013

Stanford CS193p!
Fall 2013

CoreDataTableViewController
 NSFetchedResultsController’s doc shows how to do all this!

In fact, you’re supposed to copy/paste the code from the doc into your table view subclass.!
But that’s all a bit of a pain, so ...!

Enter CoreDataTableViewController!!
We’ve copy/pasted the code from NSFetchedResultsController into a subclass of UITVC for you!!

How does CoreDataTableViewController work?!
It’s just a UITableViewController that adds an NSFetchedResultsController as a @property.!
Whenever you set it, it will immediately start using it to fill the contents of its UITableView.!

Easy to use!
Download it along with your homework assignment.!
Just subclass it and override the methods that load up cells and/or react to rows being selected!
 (you’ll use the NSFetchedResultsController method objectAtIndexPath: mentioned earlier).!
Then just set the fetchedResultsController @property and watch it go!

Stanford CS193p!
Fall 2013

Demo
Photomania!
Gets recent photos from Flickr.!
Shows a list of photographers who took all the photos.!
Select a photographer -> shows a list of all the photos that photographer took.!
Core Data Entities: Photographer and Photo.!

Watch for ...!
How we define our database schema graphically in Xcode.!
How we create NSManagedObject subclasses and then add categories to them.!
Especially how we use categories to create “factory” methods to create/initialize database objects.!
The Application Delegate (finally!)!
NSManagedObjectContext
Background Fetching!
Background URL Sessions!
NSNotification posting and listening!
How we use CoreDataTableViewController to hook the table views up to the database.

Stanford CS193p!
Fall 2013

Coming Up
Homework!
Last one!!
Due next Wednesday.!

Friday!
Instruments (performance monitoring in Xcode).!
(This is actually at risk. Watch Piazza for whether it’s going to come together.)!

Next Week!
More Multitasking!
Advanced Segueing!
Map Kit?

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
 UIApplication!

What’s that?!
Network Activity Indicator!
An application wide activity spinner for network activity only!

Demo Followup!
A couple of things to note about last week’s demo!

Demo!
More Photomania (iPad version with popover)!

Maps!
Showing whether things are on earth!
We’ll get as far as we can, then continue on Wednesday (along with a demo)

Stanford CS193p!
Fall 2013

UIApplication
 UIApplication!

There is a shared instance of a UIApplication object in your application.!
This is different from your Application Delegate (the thing that handles all those message from iOS).!
You almost never need it, but it can give you some interesting (very global) information.!
UIApplication *myApplication = [UIApplication sharedApplication]; !
Check out its documentation.

Stanford CS193p!
Fall 2013

Network Activity Indicator
Network Activity Indicator
This property in UIApplication is interesting …!
@property (nonatomic, getter=is…) networkActivityIndicatorVisible; !
When this is set to YES, a little spinner will appear in the status bar. NO means turn it off.!
This spinner is ONLY for network activity (but you should spin it for ALL network activity you do).!

It can be somewhat difficult to use this property correctly
Because it is global and is a boolean.!
What if you have multiple, overlapping threads using the network at the same time?!
You are required to layer mechanism for that on top of this property yourself.

Stanford CS193p!
Fall 2013

Demo Followup
We forgot to set our minimum background fetch interval!
[[UIApplication sharedApplication] setMinimumBackgroundFetchInterval:(NSTimeInterval)interval];
!
The default is UIApplicationBackgroundFetchIntervalNever, so set it or you get none!!
Minimum you can set it to is UIApplicationBackgroundFetchIntervalMinimum (often want this).!
Usually you would set this in application:didFinishLaunchingWithOptions:.!
!
Also, the user can turn off your application’s ability to run in the background entirely!!
@property UIBackgroundRefreshStatus backgroundRefreshStatus;

Fetching when given the opportunity!
When we are given the opportunity to fetch in the background, we should do a normal fetch.!
In other words, do a normal, ephemeral URL session fetch, not a background session URL fetch.!
Background session URL fetches are discretionary (meaning iOS can refuse if in background).!
The posted code from last week does this.!
Doing a normal fetch also makes it easier to call the completion handler with the NewData option!

Stanford CS193p!
Fall 2013

Demo
More Photomania!!
Flesh out Photomania on iPad & add the table of photos by the photographer and an image VC.!
Then we’ll add a popover to show the URL of the photo we’re looking at.

Stanford CS193p!
Fall 2013

Core Location
Framework for managing location and heading!
No user-interface.!

Basic object is CLLocation!
@propertys: coordinate, altitude, horizontal/verticalAccuracy, timestamp, speed, course!

Where (approximately) is this location?!
@property (readonly) CLLocationCoordinate2D coordinate;
typedef {
 CLLocationDegrees latitude; // a double
 CLLocationDegrees longitude; // a double
} CLLocationCoordinate2D;
!
@property (readonly) CLLocationDistance altitude; // meters
A negative value means “below sea level.”

Stanford CS193p!
Fall 2013

Core Location
How close to that latitude/longitude is the actual location?!
@property (readonly) CLLocationAccuracy horizontalAccuracy; // in meters
@property (readonly) CLLocationAccuracy verticalAccuracy; // in meters
A negative value means the coordinate or altitude (respectively) is invalid.
kCLLocationAccuracyBestForNavigation // phone should be plugged in to power source
kCLLocationAccuracyBest
kCLLocationAccuracyNearestTenMeters
kCLLocationAccuracyHundredMeters
kCLLocationAccuracyKilometer
kCLLocationAccuracyThreeKilometers

The more accuracy you request, the more battery will be used!
Device “does its best” given a specified accuracy request
Cellular tower triangulation (not very accurate, but low power)
WiFi node database lookup (more accurate, more power)
GPS (very accurate, lots of power)

Stanford CS193p!
Fall 2013

Core Location
Speed!
@property (readonly) CLLocationSpeed speed; // in meters/second
Note that the speed is instantaneous (not average speed).
Generally it’s useful as “advisory information” when you are in a vehicle.
A negative value means “speed is invalid.”!

Course!
@property (readonly) CLLocationDirection course; // in degrees, 0 is north, clockwise
Not all devices can deliver this information.
A negative value means “course is invalid.”!

Time stamp!
@property (readonly) NSDate *timestamp;
Pay attention to these since locations will be delivered on an inconsistent time basis.!

Distance between CLLocations!
- (CLLocationDistance)distanceFromLocation:(CLLocation *)otherLocation; // in meters

Stanford CS193p!
Fall 2013

Core Location
How do you get a CLLocation?
Almost always from a CLLocationManager (sent to you via its delegate).
Can be tested in the simulator from Xcode.

Stanford CS193p!
Fall 2013

Core Location
How do you get a CLLocation?
Almost always from a CLLocationManager (sent to you via its delegate).
Can be tested in the simulator from Xcode.

CLLocationManager
General approach to using it:
1. Check to see if the hardware you are on/user supports the kind of location updating you want.
2. Create a CLLocationManager instance and set the delegate to receive updates.
3. Configure the manager according to what kind of location updating you want.
4. Start the manager monitoring for location changes.

Stanford CS193p!
Fall 2013

Core Location
Kinds of location monitoring!
Accuracy-based continual updates.!
Updates only when “significant” changes in location occur.!
Region-based updates.!
Heading monitoring.

Stanford CS193p!
Fall 2013

Core Location
Checking to see what your hardware can do!
+ (CLAuthorizationStatus)authorizationStatus; // Authorized, Denied or Restricted (parental, enterprise)
+ (BOOL)locationServicesEnabled; // user has enabled (or not) location services for your application
+ (BOOL)significantLocationChangeMonitoringAvailable;
+ (BOOL)isMonitoringAvailableForClass:(Class)regionClass; // [CLBeacon/CLCircularRegion class]
+ (BOOL)isRangingAvailable; // device can tell how far it is from beacons!
Other tests for other location capabilities too.

Getting the information from the CLLocationManager!
You can just ask (poll) the CLLocationManager for the location or heading, but usually we don’t.
Instead, we let it update us when the location changes (enough) via its delegate ...

Stanford CS193p!
Fall 2013

Core Location
Error reporting to the delegate!
- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error;
Not always a fatal thing, so pay attention to this delegate method. Some examples …
kCLErrorLocationUnknown // likely temporary, keep waiting (for a while at least)
kCLErrorDenied // user refused to allow your application to receive updates
kCLErrorHeadingFailure // too much local magnetic interference, keep waiting

Stanford CS193p!
Fall 2013

Core Location
Accuracy-based continuous location monitoring!
@property CLLocationAccuracy desiredAccuracy; // always set this as low as will work for you!
You can also limit updates to only occurring if the change in location exceeds a certain distance …!
@property CLLocationDistance distanceFilter; !

Starting and stopping normal position monitoring!
- (void)startUpdatingLocation;
- (void)stopUpdatingLocation;
Be sure to turn updating off when your application is not going to consume the changes!!

Get notified via the CLLocationManager’s delegate!
- (void)locationManager:(CLLocationManager *)manager
 didUpdateLocations:(NSArray *)locations; // of CLLocation!

Similar API for heading (CLHeading, et. al.)

Stanford CS193p!
Fall 2013

Core Location
Background!
It is possible to receive these kinds of updates in the background.!
Apps that do this have to be very careful (because these updates can be power hungry).!
There are very cool ways to, for example, coalesce and defer location update reporting.!
Have to enable backgrounding (in the same area of your project settings as background fetch).!
!
But there are 2 ways to get location notifications (on a coarser scale) without doing that …

Stanford CS193p!
Fall 2013

Core Location
Significant location change monitoring in CLLocationManager!
“Significant” is not strictly defined. Think vehicles, not walking. Likely uses cell towers.
- (void)startMonitoringSignificantLocationChanges;
- (void)stopMonitoringSignificantLocationChanges;
Be sure to turn updating off when your application is not going to consume the changes!!

Get notified via the CLLocationManager’s delegate!
Same as for accuracy-based updating if your application is running.!

And this works even if your application is not running!!
(Or is in the background.)
You will get launched and your Application Delegate will receive the message!
 application:didFinishLaunchingWithOptions: with an options dictionary that will contain
 UIApplicationLaunchOptionsLocationKey
Create a CLLocationManager (if you don’t have one), then get the latest location via
@property (readonly) CLLocation *location;
If you are running in the background, don’t take too long (a few seconds)!

Stanford CS193p!
Fall 2013

Core Location
Region-based location monitoring in CLLocationManager!
- (void)startMonitoringForRegion:(CLRegion *)region; // CLCircularRegion/CLBeaconRegion
- (void)stopMonitoringForRegion:(CLRegion *)region; !
Alloc and initWithCenter:radius:identifier: a CLCircularRegion to monitor an area.!
Beacons are for detecting when you are near another device. New in iOS 7.

Get notified via the CLLocationManager’s delegate!
- (void)locationManager:(CLLocationManager *)manager didEnterRegion:(CLRegion *)region;
- (void)locationManager:(CLLocationManager *)manager didExitRegion:(CLRegion *)region;
 - (void)locationManager:(CLLocationManager *)manager
monitoringDidFailForRegion:(CLRegion *)region
 withError:(NSError *)error;

Works even if your application is not running!!
In exactly the same way as “significant location change” monitoring.
The set of monitored regions persists across application termination/launch.
@property (readonly) NSSet *monitoredRegions; // property on CLLocationManager

Stanford CS193p!
Fall 2013

Core Location
CLRegions are tracked by name!
Because they survive application termination/relaunch.!

Circular region monitoring size limit!
@property (readonly) CLLocationDistance maximumRegionMonitoringDistance;
Attempting to monitor a region larger than this (radius in meters) will generate an error
 (which will be sent via the delegate method mentioned on previous slide).
If this property returns a negative value, then region monitoring is not working.!

Beacon regions can also detect range from a beacon!
- (void)startRangingBeaconsInRegion:(CLBeaconRegion *)beaconRegion;
Delegate method locationManager:didRangeBeacons:inRegion: gives you CLBeacon objects.!
CLBeacon objects will tell you proximity (e.g. CLProximityImmediate/Near/Far).!

To be a beacon is a bit more involved!
Beacons are identified by a globally unique UUID (that you generate).!
Check out CBPeripheralManager (Core Bluetooth Framework).

Stanford CS193p!
Fall 2013

Coming Up
Homework!
Due Friday!

Wednesday!
MapKit!
Photomania Map (and Embed Segue) Demo!

Friday!
Core Image!

Next Week!
Miscellaneous Topics

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
 MapKit!

User interface for dealing with locations.!
Embed Segue!
Putting one VC’s self.view inside another VC’s View!

Photomania Map Demo!
Embedding a Map View Controller into our View Controller that displays a Photo

Stanford CS193p!
Fall 2013

Map Kit
MKMapView displays a map

Stanford CS193p!
Fall 2013

Map Kit
MKMapView displays a map

The map can have annotations on it
Each annotation is simply a coordinate, a title and a subtitle.
They are displayed using an MKAnnotationView
(MKPinAnnotationView shown here).

Stanford CS193p!
Fall 2013

Map Kit
MKMapView displays a map

The map can have annotations on it
Each annotation is simply a coordinate, a title and a subtitle.
They are displayed using an MKAnnotationView
(MKPinAnnotationView shown here).

Annotations can have a callout
It appears when the annotation view is clicked.
By default just shows the title and subtitle.

Stanford CS193p!
Fall 2013

Map Kit
MKMapView displays a map

The map can have annotations on it
Each annotation is simply a coordinate, a title and a subtitle.
They are displayed using an MKAnnotationView
(MKPinAnnotationView shown here).

Annotations can have a callout
It appears when the annotation view is clicked.
By default just shows the title and subtitle.

But callout can also have accessory views
In this example, the left is a UIImageView,
the right is a UIButton (UIButtonTypeDetailDisclosure)

Stanford CS193p!
Fall 2013

MKMapView
Create with alloc/init or drag from object palette in Xcode!
Displays an array of objects which implement MKAnnotation!
@property (readonly) NSArray *annotations; // contains id <MKAnnotation> objects !

 MKAnnotation protocol!
@protocol MKAnnotation <NSObject>
@property (readonly) CLLocationCoordinate2D coordinate;
@optional
@property (readonly) NSString *title;
@property (readonly) NSString *subtitle;
@end
!
typedef {
 CLLocationDegrees latitude;
 CLLocationDegrees longitude;
} CLLocationCoordinate2D;

Stanford CS193p!
Fall 2013

MKAnnotation
Note that the annotations property is readonly, so …!
@property (readonly) NSArray *annotations; // contains id <MKAnnotation> objects !
Must add/remove annotations explicitly
- (void)addAnnotation:(id <MKAnnotation>)annotation;
- (void)addAnnotations:(NSArray *)annotations;
- (void)removeAnnotation:(id <MKAnnotation>)annotation;
- (void)removeAnnotations:(NSArray *)annotations; !

Generally a good idea to add all your annotations up-front!
Allows the MKMapView to be efficient about how it displays them!
Annotations are light-weight, but annotation views are not.!
Luckily MKMapView reuses annotation views similar to how UITableView reuses cells.

Stanford CS193p!
Fall 2013

MKAnnotation
What do annotations look like on the map?
Annotations are drawn using an MKAnnotationView subclass.
The default one is MKPinAnnotationView (which is why they look like pins by default).
You can subclass or set properties on existing MKAnnotationViews to modify the look.

Stanford CS193p!
Fall 2013

MKAnnotation
What do annotations look like on the map?
Annotations are drawn using an MKAnnotationView subclass.
The default one is MKPinAnnotationView (which is why they look like pins by default).
You can subclass or set properties on existing MKAnnotationViews to modify the look.

What happens when you touch on an annotation (e.g. the pin)?
Depends on the MKAnnotationView that is associated with the annotation (more on this later).
By default, nothing happens, but if canShowCallout is YES in the MKAnnotationView, then

a little box will appear showing the annotation’s title and subtitle.
And this little box (the callout) can be enhanced with left/rightCalloutAccessoryViews.

The following delegate method is also called…
- (void)mapView:(MKMapView *)sender didSelectAnnotationView:(MKAnnotationView *)aView;
This is a great place to set up the MKAnnotationView‘s callout accessory views lazily.
For example, you might want to wait until this method is called to download an image to show.

Stanford CS193p!
Fall 2013

MKAnnotationView
How are MKAnnotationViews created & associated w/annotations?!
Very similar to UITableViewCells in a UITableView.
Implement the following MKMapViewDelegate method (if not implemented, returns a pin view).
- (MKAnnotationView *)mapView:(MKMapView *)sender
 viewForAnnotation:(id <MKAnnotation>)annotation
{
 MKAnnotationView *aView = [sender dequeueReusableAnnotationViewWithIdentifier:IDENT];
 if (!aView) {
 aView = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:IDENT];
 // set canShowCallout to YES and build aView’s callout accessory views here
 }
 aView.annotation = annotation; // yes, this happens twice if no dequeue
 // maybe load up accessory views here (if not too expensive)?
 // or reset them and wait until mapView:didSelectAnnotationView: to load actual data
 return aView;
}
You can see why you might want to only show visible annotations (to keep view count low)

Stanford CS193p!
Fall 2013

MKAnnotationView
MKAnnotationView !
Interesting properties (all nonatomic, strong if a pointer) …
@property id <MKAnnotation> annotation; // the annotation; treat as if readonly
@property UIImage *image; // instead of the pin, for example
@property UIView *leftCalloutAccessoryView; // maybe a UIImageView
@property UIView *rightCalloutAccessoryView; // maybe a “disclosure” UIButton
@property BOOL enabled; // NO means it ignores touch events, no delegate method, no callout
@property CGPoint centerOffset; // where the “head of the pin” is relative to the image
@property BOOL draggable; // only works if the annotation implements setCoordinate:!

If you set one of the callout accessory views to a UIControl!
e.g. aView.rightCalloutAccessoryView = [UIButton buttonWithType:UIButtonTypeDetailDisclosure]; !
The following MKMapViewDelegate method will get called when the accessory view is touched ...
 - (void)mapView:(MKMapView *)sender
 annotationView:(MKAnnotationView *)aView
calloutAccessoryControlTapped:(UIControl *)control;

Stanford CS193p!
Fall 2013

MKAnnotationView
Using didSelectAnnotationView: to load up callout accessories!
Example ... downloaded thumbnail image in leftCalloutAccessoryView.
Create the UIImageView and assign it to leftCalloutAccessoryView in mapView:viewForAnnotation:.
Reset the UIImageView’s image to nil there as well.!
!
Then load the image on demand in mapView:didSelectAnnotationView: ...
- (void)mapView:(MKMapView *)sender didSelectAnnotationView:(MKAnnotationView *)aView
{
 if ([aView.leftCalloutAccessoryView isKindOfClass:[UIImageView class]]) {
 UIImageView *imageView = (UIImageView *)aView.leftCalloutAccessoryView;
 imageView.image = ...; // if you do this in a GCD queue, be careful, views are reused!
 }
}

Stanford CS193p!
Fall 2013

MKMapView
Configuring the map view’s display type!
@property MKMapType mapType;
MKMapTypeStandard, MKMapTypeSatellite, MKMapTypeHybrid; !

Showing the user’s current location!
@property BOOL showsUserLocation;
@property (readonly) BOOL isUserLocationVisible;
@property (readonly) MKUserLocation *userLocation;
MKUserLocation is an object which conforms to MKAnnotation which holds the user’s location.!

Restricting the user’s interaction with the map!
@property BOOL zoomEnabled;
@property BOOL scrollEnabled;
@property BOOL pitchEnabled; // 3D
@property BOOL rotateEnabled;

Stanford CS193p!
Fall 2013

MKMapCamera
Setting where the user is seeing the map from (in 3D)!
MKMapView @property (copy) MKMapCamera *camera;!

 MKMapCamera!
Specify centerCoordinate, heading, pitch and altitude of the camera.
Or use convenient initializer …!
+ (MKMapCamera *)cameraLookingAtCenterCoordinate:(CLLocationCoordinate2D)coord
 fromEyeCoordinate:(CLLocationCoordinate2D)cameraPosition
 eyeAltitude:(CLLocationDistance)eyeAltitude;

Stanford CS193p!
Fall 2013

MKMapView
Controlling the region (part of the world) the map is displaying!
@property MKCoordinateRegion region;
typedef struct {
 CLLocationCoordinate2D center;
 MKCoordinateSpan span;
} MKCoordinateRegion;
typedef struct {
 CLLocationDegrees latitudeDelta;
 CLLocationDegrees longitudeDelta;
}
- (void)setRegion:(MKCoordinateRegion)region animated:(BOOL)animated; // animate

Can also set the center point only or set to show annotations!
@property CLLocationCoordinate2D centerCoordinate;
- (void)setCenterCoordinate:(CLLocationCoordinate2D)center animated:(BOOL)animated;
- (void)showAnnotations:(NSArray *)someAnnotations animated:(BOOL)animated;

Stanford CS193p!
Fall 2013

MKMapView
Lots of C functions to convert points, regions, rects, etc.!
See documentation, e.g. MKMapRectContainsPoint, MKMapPointForCoordinate, etc.!

Converting to/from map points/rects from/to view coordinates!
- (MKMapPoint)mapPointForPoint:(CGPoint)point;
- (MKMapRect)mapRectForRect:(CGRect)rect;
- (CGPoint)pointForMapPoint:(MKMapPoint)mapPoint;
- (CGRect)rectForMapRect:(MKMapRect)mapRect; !
Etc.

Stanford CS193p!
Fall 2013

MKMapView
Another MKMapViewDelegate method …!
- (void)mapView:(MKMapView *)mapView didChangeRegionAnimated:(BOOL)animated;
This is a good place to “chain” animations to the map.!
When you display somewhere new in the map that is far away, zoom out, then back in.!
This method will let you know when it’s finished zooming out, so you can then zoom in.

Stanford CS193p!
Fall 2013

MKLocalSearch
Searching for places in the world!
Can search by “natural language” strings asynchronously (uses the network) …
MKLocalSearchRequest *request = [[MKLocalSearchRequest alloc] init];
request.naturalLanguageQuery = @“Ike’s”;
request.region = …; // e.g., Stanford campus
MKLocalSearch *search = [[MKLocalSearch alloc] initWithRequest:request];
[search startWithCompletionHandler:^(MKLocalSearchResponse *response, NSError *error) {
 // response contains an array of MKMapItem which contains MKPlacemark
}];

 MKMapItem!
You can open one of these in the Maps app!!
- (BOOL)openInMapsWithLaunchOptions:(NSDictionary *)options; // options like region, show traffic!

 MKPlacemark!
Contains location, name of location, postalCode, region, etc.

Stanford CS193p!
Fall 2013

MKDirections
Getting directions from one place to another!
Very similar API to searching.!
Specify source and destination MKMapItem.!
Asynchronous API to get a bunch of MKRoutes.!
!
MKRoute includes a name for the route, turn-by-turn directions,
expected travel time, etc.!
!
Also come with MKPolyline descriptions of the routes which can be
overlaid on the map …

Stanford CS193p!
Fall 2013

Overlays
Overlays!
Add overlays to the MKMapView and it will later ask you for a renderer to draw the overlay.
- (void)addOverlay:(id <MKOverlay>)overlay level:(MKOverlayLevel)level;
Level is (currently) either AboveRoads or AboveLabels (over everything but annotation views).
- (void)removeOverlay:(id <MKOverlay>)overlay;!
MKOverlay protocol!
Protocol which includes MKAnnotation plus ...
@property (readonly) MKMapRect boundingMapRect;
- (BOOL)intersectsMapRect:(MKMapRect)mapRect; // optional, uses boundingMapRect otherwise!

Overlays are associated with MKOverlayRenderers via delegate!
Just like annotations are associated with MKAnnotationViews, so are renderers with overlays …
- (MKOverlayRenderer *)mapView:(MKMapView *)sender
 rendererForOverlay:(id <MKOverlay>)overlay;

Stanford CS193p!
Fall 2013

MKOverlayView
Built-in Overlays and Renderers for numerous shapes …!
MKCircleRenderer
MKPolylineRenderer
MKPolygonRenderer
MKTileOverlayRenderer // can also be used to replace the map data from Apple!
There’s a whole set of MKShape and subclasses thereof for you to explore.

Stanford CS193p!
Fall 2013

Embed Segues
Putting a VC’s self.view in another VC’s view hierarchy!
This can be a very powerful encapsulation technique.!

Xcode makes this easy
Drag out a Container View from the object palette into the scene you want to embed it in.
Automatically sets up an “Embed Segue” from container VC to the contained VC.!

Embed Segue
Works just like other segues.
prepareForSegue:sender:, et. al.

Stanford CS193p!
Fall 2013

Embed Segues
Putting a VC’s self.view in another VC’s view hierarchy!
This can be a very powerful encapsulation technique.!

Xcode makes this easy
Drag out a Container View from the object palette into the scene you want to embed it in.
Automatically sets up an “Embed Segue” from container VC to the contained VC.!

Embed Segue
Works just like other segues.
prepareForSegue:sender:, et. al.!

View Loading Timing
Don’t forget, though, that just like other segued-to VCs the embedded VC’s outlets are not
 set at the time prepareForSegue:sender: is called.

Stanford CS193p!
Fall 2013

Demo
Photomania Maps!
Instead of showing a table of photos, show a map of them.!
Maps show id <MKAnnotation>s, so we’ll turn a Photo object into an MKAnnotation!!
Show thumbnails when users click on photo pins in the map.!
Allow user to segue to a full view of the photo from the callout.!
On iPad embed the map inside a ImageViewController.

Stanford CS193p!
Fall 2013

Coming Up
Homework!
Due Friday!

Friday!
Core Image!

Next Week!
Miscellaneous Topics

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
Modal Segues!
Transitioning to a Controller which “takes over your UI” until it’s done with the user.!

Text Fields!
How to get text input from the user.!

Alerts and Action Sheets!
Notifying the user and getting “branching decisions” from the user.!

Demo!
Adding a photo taken by the user to Photomania.!

Camera (time permitting)!
And Photo Library.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen
Should be used with care.

Example
Contacts application.

Tapping here adds a new contact.!
It does so by taking over the entire screen.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

This is not a push.!
Notice, no back button (only Cancel).

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

Tapping here adds a photo to this contact.!
It also does so by taking over the entire screen.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

Again, no back button.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

Let’s Cancel and see what happens.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

We’re back to the last Modal View Controller.

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

And Cancel again …

Stanford CS193p!
Fall 2013

Modal View Controllers
A way of segueing that takes over the screen!
Should be used with care.!

Example!
Contacts application.

Back to where we started.

Stanford CS193p!
Fall 2013

Modal View Controllers
Considerations!
The view controller we segue to using a Modal segue will take over the entire screen.
This can be rather disconcerting to the user, so use this carefully.!

How do we set a Modal segue up?!
Just ctrl-drag from, for example, a button to another View Controller & pick segue type “Modal”.
Inspect the segue to set the style of presentation (more on this later). !
!
If you need to present a Modal VC not from a button, use a manual segue (last lecture).
Or it can be done in code (not via segue) with presentViewController:animated:completion: method
 (that’s kind of “old style” way to do it, though, pretty rare).

Stanford CS193p!
Fall 2013

Modal View Controllers
Preparing for a Modal segue!
You prepare for a Modal segue just like any other segue ...!
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
 if ([segue.identifier isEqualToString:@“GoToMyModalVC”]) {
 MyModalVC *vc = segue.destinationViewController;
 // set up the vc to run here
 }
}

Hearing back from a Modally segue-to View Controller!
When the Modal View Controller is “done”, how does it communicate results back to presenter?
You do this by having the segued-to View Controller “segue back” using an “unwind segue.”
“Unwind segues” are special because they are the only segues that do not instantiate a new VC!
Instead, they segue to an already existing VC.!
But they are limited to VC’s that “presented” the VC that is segueing back.
This can be this Modal mechanism, but could also be, e.g., “pushing” in a navigation controller.

Stanford CS193p!
Fall 2013

Modal View Controllers
Setting up an Unwind Segue
In the presenting view controller (the one to which you want to “segue back” or “unwind”),
 you implement an IBAction with any name, but with a UIStoryBoardSegue as its argument.
For example ...!
- (IBAction)done:(UIStoryboardSegue *)segue
 MyModalVC *vc = (MyModalVC *)segue.sourceViewController;
 // get results out of vc, which I presented
}
Then, ctrl-drag from some UI (button?) in the presented view controller’s scene to this icon
 in the presented view controller’s scene (not in the presenter’s scene).
Select the method (e.g. done: above) you want to use to unwind.!
Now the method above will be called in the presenting view controller when that UI is activated.!
When this happens, a modally presented view controller will also automatically dismiss.!
The presented view controller will also be sent prepareForSegue:sender: before done: gets called.!
 (You can set an unwind segue’s identifier using the Document Outline.)

Stanford CS193p!
Fall 2013

Modal View Controllers
Can you dismiss a view controller from code?!
Yes, but it is generally not the preferred way to do it (unwind instead) ...
- (void)dismissViewControllerAnimated:(BOOL)animated
 completion:(void (^)(void))block;
You do NOT send this to the modal VC! You send it to the view controller that presented it.!

Modal view controllers dismissing themselves!
This is usually frowned upon.!
However, it sometimes happens on cancel (i.e. the user did nothing in the modal view controller).!
But you still do it by sending dismissModalViewController: to the presenting view controller:!
[self.presentingViewController dismissViewControllerAnimated:YES ...];

Stanford CS193p!
Fall 2013

Modal View Controllers
How is the modal view controller animated onto the screen?!
Depends on this property in the view controller that is being put up modally ...
@property UIModalTransitionStyle modalTransitionStyle;
UIModalTransitionStyleCoverVertical // slides up and down from bottom of screen
UIModalTransitionStyleFlipHorizontal // flips the current view controller view over to modal
UIModalTransitionStyleCrossDissolve // old fades out as new fades in
UIModalTransitionStylePartialCurl // only if presenter is full screen (and no more modal)!

What about iPad?!
Sometimes it might not look good for a presented view to take up the entire screen.
@property UIModalPresentationStyle modalPresentationStyle; // in the modal VC
UIModalPresentationFullScreen // full screen anyway (always on iPhone/iPod Touch)
UIModalPresentationPageSheet // full screen height, but portrait width even if landscape
UIModalPresentationFormSheet // centered on the screen (all else dimmed)
UIModalPresentationCurrentContext // parent’s context (e.g. in a popover)!
Also possible for the presenting VC to control these things (see definesPresentationContext).

Stanford CS193p!
Fall 2013

UITextField
Like UILabel, but editable!
Typing things in on an iPhone is secondary UI (keyboard is tiny).
More of a mainstream UI element on iPad.
Don’t be fooled by your UI in the simulator (because you can use physical keyboard!).
You can set attributed text, text color, alignment, font, etc., just like a UILabel.!

Keyboard appears when UITextField becomes “first responder”!
It will do this automatically when the user taps on it.
Or you can make it the first responder by sending it the becomeFirstResponder message.
To make the keyboard go away, send resignFirstResponder to the UITextField.!

Delegate can get involved with Return key, etc.!
- (BOOL)textFieldShouldReturn:(UITextField *)sender; // sent when Return key is pressed
Oftentimes, you will [sender resignFirstResponder] in this method.
Returns whether to do normal processing when Return key is pressed (e.g. target/action).

Stanford CS193p!
Fall 2013

UITextField
Finding out when editing has ended!
Another delegate method ...
- (void)textFieldDidEndEditing:(UITextField *)sender;
Sent when the text field resigns being first responder.!

Finding out when the text changes!
UITextFieldTextDidChangeNotification
You can sign up for this NSNotification to find out when the user changes the text.!
UITextField is a UIControl!
So you can also set up target/action to notify you when things change.
Just like with a button, there are different UIControlEvents which can kick off an action.
Right-click on a UITextField in a storyboard to see the options available.

Stanford CS193p!
Fall 2013

Keyboard
Controlling the appearance of the keyboard!
Set the properties defined in the UITextInputTraits protocol (which UITextField implements).
@property UITextAutocapitalizationType autocapitalizationType; // words, sentences, etc.
@property UITextAutocorrectionType autocorrectionType; // UITextAutocorrectionTypeYES/NO
@property UIReturnKeyType returnKeyType; // Go, Search, Google, Done, etc.
@property BOOL secureTextEntry; // for passwords, for example
@property UIKeyboardType keyboardType; // ASCII, URL, PhonePad, etc.!

The keyboard comes up over other views!
So you may need to adjust your view positioning (especially to keep the text field itself visible).
You do this by reacting to the UIKeyboard{Will,Did}{Show,Hide}Notifications sent by UIWindow.
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(theKeyboardAppeared:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];
The userInfo in the NSNotification will have details about the appearance.!
UITableViewController listens for this and scrolls table automatically if a row has a UITextField.

Stanford CS193p!
Fall 2013

UITextField
Other UITextField properties!
@property BOOL clearsOnBeginEditing;
@property BOOL adjustsFontSizeToFitWidth;
@property CGFloat minimumFontSize; // always set this if you set adjustsFontSizeToFitWidth
@property NSString *placeholder; // drawn in gray when text field is empty
@property UIImage *background/disabledBackground;
@property NSDictionary *defaultTextAttributes; // applies to entire text

Other UITextField functionality!
UITextFields have a “left” and “right” overlays (similar to accessory views in MKAnnotationView).
You can control in detail the layout of the text field (border, left/right view, clear button).!

Other Keyboard functionality!
Keyboards can have accessory views that appear above the keyboard (custom toolbar, etc.).
@property (retain) UIView *inputAccessoryView; // UITextField method

Stanford CS193p!
Fall 2013

Action Sheet!
&!

Alert

Stanford CS193p!
Fall 2013

Alerts and Action Sheets
Two kinds of “pop up and ask the user something” mechanisms
Alerts
Action Sheets!

Alerts
Pop up in the middle of the screen.
Usually ask questions with only two (or one) answers (e.g. OK/Cancel, Yes/No, etc.).
Can be disruptive to your user-interface, so use carefully.
Often used for “asynchronous” problems (“connection reset” or “network fetch failed”).!

Action Sheets
Usually slides in from the bottom of the screen on iPhone/iPod Touch, and in a popover on iPad.
Can be displayed from a tab bar, toolbar, bar button item or from a rectangular area in a view.
Usually asks questions that have more than two answers.
Think of action sheets as presenting “branching decisions” to the user (i.e. what next?).

Stanford CS193p!
Fall 2013

UIActionSheet
Initializer!
 -(id)initWithTitle:(NSString *)title
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 destructiveButtonTitle:(NSString *)destructiveButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically!
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet!
UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:...];
[actionSheet showInView:(UIView *)]; // centers the view on iPad (don’t use this on iPad)
[actionSheet showFromRect:(CGRect) inView:(UIView *) animated:(BOOL)]; // good on iPad
[actionSheet showFromBarButtonItem:(UIBarButtonItem *) animated:(BOOL)]; // good on iPad
Universal apps require care here (though some can work on both platforms, e.g., showFromRect:).

Stanford CS193p!
Fall 2013

UIActionSheet
Finding out what the user has chosen via the delegate!
- (void)actionSheet:(UIActionSheet *)sender didDismissWithButtonIndex:(NSInteger)index;

Remember from initializer that Cancel/Destructive are special!
@property NSInteger cancelButtonIndex; // don’t set this if you set it in initializer
@property NSInteger destructiveButtonIndex; // don’t set this if you set it in initializer

Other indexes!
@property (readonly) NSInteger firstOtherButtonIndex;
@property (readonly) NSInteger numberOfButtons;
- (NSString *)buttonTitleAtIndex:(NSInteger)index;
The “other button” indexes are in the order you specified them in initializer and/or added them.!

You can programmatically dismiss the action sheet as well!
- (void)dismissWithClickedButtonIndex:(NSInteger)index animated:(BOOL)animated;
It is generally recommended to call this on UIApplicationDidEnterBackgroundNotification.
Remember also that you might be terminated while you are in the background, so be ready.

Stanford CS193p!
Fall 2013

UIActionSheet
Special popover considerations: no Cancel button!
An action sheet in a popover (that is not inside a popover) does not show the cancel button.!
It does not need one because clicking outside the popover dismisses it.!
It will automatically not show the Cancel button (just don’t be surprised that it’s not there).!

Special popover considerations: the popover’s passthroughViews!
If you showFromBarButtonItem:animated:, it adds the toolbar to popover’s passthroughViews.!
This is annoying because repeated touches on the bar button item give multiple action sheets!!
Also, other buttons in your toolbar will work (which might or might not make sense).!
Unfortunately, you just have to handle this in all of your bar buttons, including the action sheet’s.!

Special popover considerations: bar button item handling!
Have a weak @property in your class that points to the UIActionSheet.!
Set it right after you show the action sheet.!
Check that @property at the start of your bar button item’s action method.!
If it is not-nil (since it is weak, it will only be non-nil if it’s still on-screen), just dismiss it.!
If it is nil, prepare and show your action sheet.

Stanford CS193p!
Fall 2013

UIAlertView
Multiple Buttons!

&!
Embedded Views

Stanford CS193p!
Fall 2013

UIAlertView
Very similar to Action Sheet ...!
 -(id)initWithTitle:(NSString *)title
 message:(NSString *)message // different from UIActionSheet
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically!
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet!
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:...];
[alert show]; // different from UIActionSheet, always appears in center of screen

You can even have a UITextField in your Alert!
alert.alertViewStyle = UIAlertViewStyle{SecureText,PlainText,LoginAndPassword}Input;
[alertView textFieldAtIndex:0] gives you the UITextField (1 is password in LoginAndPassword)

Stanford CS193p!
Fall 2013

Demo
Photomania Add Photo!
Let user add a photo to our Photomania database using the camera.!
We probably won’t actually get to the “camera” part today!!
But we’ll set up for that by creating a Modally-segued-to View Controller to do it.!
Watch for … Modal Segue, Unwinding Segue, Text Field, Alert

Stanford CS193p!
Fall 2013

Coming Up
Wednesday!
Demo Continued!
UIImagePickerController (Camera)!
Core Motion!

Friday!
Sprite Kit!

Next Week!
Thanksgiving

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Today
Demo Odds & Ends!
Cleaning up unused image URLs.!
A bit more Core Location error checking.!

Camera!
Actually taking the photo.!
Finish off Photomania Demo (also includes Action Sheet).!

Core Motion!
Tracking the device’s movement in space.!

Demo!
Simple game based on Core Motion.!

Application Lifecycle!
Application Delegate Methods and NSNotifications.

Stanford CS193p!
Fall 2013

Demo
Photomania Add Photo (continued)!
Cleaning up unused image URLs.!
A bit more Core Location error checking.

Stanford CS193p!
Fall 2013

UIImagePickerController
Modal view to get media from camera or photo library!
Modal means you put it up with presentViewController:animated:completion:.!
On iPad, you might also put it up in a UIPopoverController.!

Usage!
1. Create it with alloc/init and set delegate.
2. Configure it (source, kind of media, user editability).
3. Present it.
4. Respond to delegate method when user is done picking the media.!

What the user can do depends on the platform!
Some devices have cameras, some do not, some can record video, some can not.!
Also, you can only offer camera OR photo library on iPad (not both together at the same time).
As with all device-dependent API, we want to start by check what’s available.
+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)sourceType;
Source type is UIImagePickerControllerSourceTypePhotoLibrary/Camera/SavedPhotosAlbum

Stanford CS193p!
Fall 2013

UIImagePickerController
But don’t forget that not every source type can give video!
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;
Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this

Stanford CS193p!
Fall 2013

UIImagePickerController
But don’t forget that not every source type can give video!
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;
Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this!

You can get even more specific about front/rear cameras!
(Though usually this is not necessary.)
+ (BOOL)isCameraDeviceAvailable:(UIImagePickerControllerCameraDevice)cameraDevice;
Either UIImagePickerControllerCameraDeviceFront or UIImagePickerControllerCameraDeviceRear.
Then check out more about each available camera:
+ (BOOL)isFlashAvailableForCameraDevice:(UIImagePickerControllerCameraDevice);
+ (NSArray *)availableCaptureModesForCameraDevice:(UIImagePickerControllerCameraDevice);
This array contains NSNumber objects with constants UIImagePic...lerCaptureModePhoto/Video.

These are declared in the MobileCoreServices framework.!
#import <MobileCoreServices/MobileCoreServices.h>

and add MobileCoreServices to your list of linked frameworks.

Stanford CS193p!
Fall 2013

UIImagePickerController
Set the source and media type you want in the picker!
(From here out, UIImagePickerController will be abbreviated UIIPC for space reasons.)
UIIPC *picker = [[UIIPC alloc] init];
picker.delegate = self; // self has to say it implements UINavigationControllerDelegate too
if ([UIIPC isSourceTypeAvailable:UIIPCSourceTypeCamera]) {
 picker.sourceType = UIIPCSourceTypeCamera;
} // else we’ll take what we can get (photo library by default)
NSString *desired = (NSString *)kUTTypeMovie; // e.g., could be kUTTypeImage
if ([[UIIPC availableMediaTypesForSourceType:picker.sourceType] containsObject:desired]) {
 picker.mediaTypes = @[desired];
 // proceed to put the picker up
} else {
 // fail, we can’t get the type of media we want from the source we want
} Notice the cast to NSString here.!

kUTTypeMovie (and kUTTypeImage) are CFStrings (Core Foundation strings).!
Unfortunately, the cast is required to avoid a warning here.

Stanford CS193p!
Fall 2013

UIImagePickerController
Editability!
@property BOOL allowsEditing;
If YES, then the user will have opportunity to edit the image/video inside the picker.
When your delegate is notified that the user is done, you’ll get both raw and edited versions.!

Limiting Video Capture!
@property UIIPCQualityType videoQuality;
UIIPCQualityTypeMedium // default
UIIPCQualityTypeHigh
UIIPCQualityType640x480
UIIPCQualityTypeLow !
UIPCQualityTypeIFrame1280x720 // native on some devices
UIPCQualityTypeIFrame960x540 // native on some devices
@property NSTimeInterval videoMaximumDuration; !

Other!
You can control which camera is used, how flash is used, etc., as well (or user can choose).

Stanford CS193p!
Fall 2013

UIImagePickerController
Present the picker!
Note that on iPad, if you are not offering Camera, you must present with popover.!
If you are offering the Camera on iPad, then full-screen is preferred.!
Remember: on iPad, it’s Camera OR Photo Library (not both at the same time).!

Delegate will be notified when user is done!
- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // extract image/movie data/metadata here, more on the next slide
 [self dismissViewControllerAnimated:YES completion:...]; // or popover dismissal
}

Also dismiss it when cancel happens!
- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissViewControllerAnimated:YES completion:...]; // or popover dismissal
}
If on iPad, you’ll want to implement popover’s didDismissPopover... delegate method too.

Stanford CS193p!
Fall 2013

UIImagePickerController
What is in that info dictionary?!
UIImagePickerControllerMediaType // kUTTypeImage or kUTTypeMovie
UIImagePickerControllerOriginalImage // UIImage
UIImagePickerControllerEditedImage // UIImage
UIImagePickerControllerCropRect // CGRect (in an NSValue)
UIImagePickerControllerMediaMetadata // NSDictionary info about the image!
UIImagePickerControllerMediaURL // NSURL edited video!
UIImagePickerControllerReferenceURL // NSURL original (unedited) video!

Saving taken images or video into the device’s photo library
Check out ALAssetsLibrary.

Stanford CS193p!
Fall 2013

UIImagePickerController
Overlay View!
@property UIView *cameraOverlayView;
Be sure to set this view’s frame properly.
Camera is always full screen (on iPhone/iPod Touch anyway): UIScreen’s bounds property.
But if you use the built-in controls at the bottom, you might want your view to be smaller.!

Hiding the normal camera controls (at the bottom)!
@property BOOL showsCameraControls;
Will leave a blank area at the bottom of the screen (camera’s aspect 4:3, not same as screen’s).
With no controls, you’ll need an overlay view with a “take picture” (at least) button.
That button should send - (void)takePicture to the picker.!
Don’t forget to dismissModalViewController: when you are done taking pictures.!

You can zoom or translate the image while capturing!
@property CGAffineTransform cameraViewTransform;
For example, you might want to scale the image up to full screen (some of it will get clipped).

Stanford CS193p!
Fall 2013

Demo
Photomania Add Photo (continued)!
Photo taking.!
Filtering via Action Sheet.

Stanford CS193p!
Fall 2013

Core Motion
API to access motion sensing hardware on your device!
Primary inputs: Accelerometer, Gyro, Magnetometer!
Not all devices have all inputs (e.g. only iPhone4-5 and 4th G iPod Touch and iPad 2 have a gyro).!

Class used to get this input is CMMotionManager!
Create with alloc/init, but use only one instance per application (else performance hit).
It is a “global resource,” so getting one via a class method somewhere is okay.!

Usage!
1. Check to see what hardware is available.
2. Start the sampling going and poll the motion manager for the latest sample it has.
... or ...
1. Check to see what hardware is available.
2. Set the rate at which you want data to be reported from the hardware,
3. Register a block (and a dispatch queue to run it on) each time a sample is taken.

Stanford CS193p!
Fall 2013

Core Motion
Checking availability of hardware sensors!
@property (readonly) BOOL {accelerometer,gyro,magnetometer,deviceMotion}Available;
The “device motion” is a combination of all available (accelerometer, magnetometer, gyro).!
We’ll talk more about that in a couple of slides.!

Starting the hardware sensors collecting data!
You only need to do this if you are going to poll for data.!
- (void)start{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates;

Is the hardware currently collecting data?!
@property (readonly) BOOL {accelerometer,gyro,magnetometer,deviceMotion}Active;

Stop the hardware collecting data!
It is a performance hit to be collecting data, so stop during times you don’t need the data.!
- (void)stop{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates;

Stanford CS193p!
Fall 2013

Core Motion
Checking the data (polling not recommended, more later)!
@property (readonly) CMAccelerometerData *accelerometerData;
CMAccelerometerData object provides @property (readonly) CMAcceleration acceleration;
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”
This raw data includes acceleration due to gravity.
@property (readonly) CMGyroData *gyroData;
CMGyroData object has one @property (readonly) CMRotationRate rotationRate;
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in rads/sec
Sign of rotation rate follows right hand rule. This raw data will be biased.
@property (readonly) CMMagnetometerData *magnetometerData;
CMMagnetometerData object has one @property (readonly) CMMagneticField magneticField;
typedef struct { double x; double y; double z; } CMMagneticField; // x, y, z in microteslas
This raw data will be biased.!
@property (readonly) CMDeviceMotion *deviceMotion;
CMDeviceMotion is an intelligent combination of gyro and acceleration.
If you have multiple detection hardware, you can report better information about each.

Stanford CS193p!
Fall 2013

CMDeviceMotion
Acceleration Data in CMDeviceMotion
@property (readonly) CMAcceleration gravity;
@property (readonly) CMAcceleration userAcceleration; // gravity factored out using gyro
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”

Rotation Data in CMDeviceMotion
@property CMRotationRate rotationRate; // bias removed from raw data using accelerometer
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in rads/sec

@property CMAttitude *attitude; // device’s attitude (orientation) in 3D space

@interface CMAttitude : NSObject // roll, pitch and yaw are in radians
@property (readonly) double roll; // around longitudinal axis passing through top/bottom
@property (readonly) double pitch; // around lateral axis passing through sides
@property (readonly) double yaw; // around axis with origin at center of gravity and
 // perpendicular to screen directed down
 // other mathematical representations of the device’s attitude also available
@end

Stanford CS193p!
Fall 2013

CMDeviceMotion
Magnetic Field Data in CMDeviceMotion!
@property (readonly) CMCalibratedMagneticField magneticField;
struct {
 CMMagneticField field;
 CMMagneticFieldCalibrationAccuracy accuracy;
} CMCalibratedMagneticField;
enum {
 CMMagneticFieldCalibrationAccuracyUncalibrated,
 Low,
 Medium,
 High
} CMMagneticFieldCalibrationAccuracy;

Stanford CS193p!
Fall 2013

Core Motion
Registering a block to receive Accelerometer data!
- (void)startAccelerometerUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMAccelerometerHandler)handler;
typedef void (^CMAccelerationHandler)(CMAccelerometerData *data, NSError *error);
queue == [[NSOperationQueue alloc] init] or [NSOperation mainQueue (or currentQueue)].!

Registering a block to receive Gyro data!
- (void)startGyroUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMGyroHandler)handler;
typedef void (^CMGyroHandler)(CMGyroData *data, NSError *error)

Registering a block to receive Magnetometer data!
- (void)startMagnetometerUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMMagnetometerHandler)handler;
typedef void (^CMMagnetometerHandler)(CMMagnetometerData *data, NSError *error)

Stanford CS193p!
Fall 2013

Core Motion
Registering a block to receive (intelligently) combined data!
- (void)startDeviceMotionUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMDeviceMotionHandler)handler;
typedef void (^CMDeviceMotionHandler)(CMDeviceMotion *motion, NSError *error);
Interesting NSError types: CMErrorDeviceRequiresMovement/CMErrorTrueNorthNotAvailable!
!
- (void)startDeviceMotionUpdatesUsingReferenceFrame:(CMAttitudeReferenceFrame)frame
 toQueue:(NSOperationQueue *)queue
 withHandler:(CMDeviceMotionHandler)handler;
enum {
 CMAttitudeReferenceFrameXArbitraryZVertical,
 XArbitraryCorrectedZVertical, // needs magnetometer; ++CPU
 XMagneticZVertical, // above + device movement
 XTrueNorthZVertical // requires GPS + magnetometer
}
@property (nonatomic) BOOL showsDeviceMovementDisplay; // whether to put up UI if required

Stanford CS193p!
Fall 2013

Core Motion
Setting the rate at which your block gets executed!
@property NSTimeInterval accelerometerUpdateInterval;
@property NSTimeInterval gyroUpdateInterval;
@property NSTimeInterval magnetometerUpdateInterval;
@property NSTimeInterval deviceMotionUpdateInterval;

It is okay to add multiple handler blocks!
Even though you are only allowed one CMMotionManager.
However, each of the blocks will receive the data at the same rate (as set above).
(Multiple objects are allowed to poll at the same time as well, of course.)

Stanford CS193p!
Fall 2013

Demo
Bouncer!
Using Accelerometer information to drive our user-interface.

Stanford CS193p!
Fall 2013

Application State
When your application’s UI starts/stops receiving events …!
Your Application Delegate gets …!
- (void)applicationDidBecomeActive:(UIApplication *)sender;
- (void)applicationWillResignActive:(UIApplication *)sender;
Everyone gets these radio station broadcasts …!
UIApplicationDidBecomeActiveNotification
UIApplicationWillResignActiveNotification
These might happen because user switched to another app or maybe a phone call come in.!
Use these notifications to pause doing stuff in your UI and then restart it later.

Stanford CS193p!
Fall 2013

Application State
When you enter the background …!
You only get a few seconds to respond to this.!
- (void)applicationDidEnterBackground:(UIApplication *)sender;
and UIApplicationDidEnterBackgroundNotification
If you need more time, it is possible (see beginBackgroundTaskWithExpirationHandler:).!
This is a notification for you to clean up any significant resource usage, etc.!

You find out when you get back to the foreground too …!
Your Application Delegate gets …!
- (void)applicationWillEnterForeground:(UIApplication *)sender;
and UIApplicationWillEnterForegroundNotification
Generally you undo whatever you did in DidEnterBackground.!
You’ll get applicationDidBecomeActive: soon after receiving the above.

Stanford CS193p!
Fall 2013

Application State
Other Application Delegate items of interest …!
Local Notifications (set timers to go off at certain times … will wake your application if needed).!
State Restoration (saving the state of your UI so that you can restore it even if you are killed).!
Data Protection (files can be set to be protected when a user’s device’s screen is locked).!
Open URL (in Xcode’s Info tab of Project Settings, you can register for certain URLs).

Stanford CS193p!
Fall 2013

Coming Up
Friday!
Sprite Kit!

Next Week!
Thanksgiving!

Final Project!
Do Not Procrastinate

Stanford CS193p!
Fall 2013

Stanford CS193p
Developing Applications for iOS!

Fall 2013-14

Stanford CS193p!
Fall 2013

Coming Up
Wednesday!
Alternate Final Presentation.!
If you are using Alternate Presentation time, submit your Keynote by noon tomorrow (Tuesday).!
Submit the slides using the normal submit script (submit again with code by Sunday).!
We will have a “live demo testing” opportunity on Wednesday as well, so bring your demo device.!

Friday!
No Section.!

Sunday!
Final Project Due (by midnight).!
Don’t forget to submit your Keynote slides along with!!

Final!
A week from Thursday at 12:15pm to 3:15pm in this room.!
Presentation is required.!
Presentation time limit is 2.5 minutes (150 seconds) and must be 1280x720 aspect ratio.!
Presentation order is random (no exceptions).

Stanford CS193p!
Fall 2013

Today
Localization!
Internationalization really.!

Settings!
Adding UI to the Settings application.!

Demo!
Internationalizing Photomania.!
Adding a Bouncer setting.

Stanford CS193p!
Fall 2013

Internationalization
Two steps to making international versions of your application
Internationalization (i18n)
Localization (l10n)!

Internationalization
This is a process of making strings externally editable (from storyboard or code).
It also involves using certain “formatting” classes for things like dates, numbers, etc.
You (the developer) get to do this work.!

Localization
A process of editing those externalized strings (and then QA’ing the result) for a given language.
You usually hire a localization company to do this work.

Stanford CS193p!
Fall 2013

Storyboards are localized by changing its strings only
And we rely on Autolayout to make it all look nice.!

First step though: Registering Localizable Languages
Go to the Project pane in Xcode (top in Navigator), then Info tab to add Localizations.
If you click “Use Base Internationalization” the strings in your storyboards will be extracted
 into editable .strings files (one for each language).

“Base” is the “localization” where storyboards
live that are localizable using only .strings files!

(hopefully this is all storyboards).

Internationalization

You must inspect the project itself
here, not the Target you build.

Click this + to add more languages
that you intend to support.

Stanford CS193p!
Fall 2013

Localizing Storyboards
Storyboards in Navigator will now have localizations!
Send the .strings files out to localizers to translate the strings.!
Localizers appreciate a demo of your application in your Base language.!
Or at least send them the storyboards so they can get context.

File InspectorNavigator

Stanford CS193p!
Fall 2013

Internationalization
What about strings not in storyboards?!
i.e., literal strings @“string”
Replace them with a variant of NSLocalizedString …!
NSString *NSLocalizedStringWithDefaultValue(NSString *key, NSString *table,
 NSString *bundle, NSString *defaultValue,
 NSString *comment); // comment is for localizers
Also NSLocalizedStringFromTableInBundle() (defaultValue is the key)
 and NSLocalizedStringFromTable() (defaultValue is the key and uses mainBundle)
 and NSLocalizedString() (defaultValue is key; mainBundle; table Localizable.strings)
Example: Change @“hello” to NSLocalizedString(@“hello”, @“Greeting at start of application.”)!

What these macros do ...!
They send this method to [NSBundle mainBundle] (or the specified bundle if macro takes one) ...
- (NSString *)localizedStringForKey:(NSString *)key
 value:(NSString *)defaultValue // if nil, will be key
 table:(NSString *)tableName; // if nil: Localizable.strings

Stanford CS193p!
Fall 2013

Localization
Generating .strings files with genstrings!
Once you have used NSLocalizedString and its variants to eliminate literal strings ...
You can use the command line utility genstrings to generate .strings files from .m files.
> cd <directory where all your .m files are>!
> genstrings *.m
Example: NSLocalizedString(@“hello”, @“Greeting at start of application.”)!
 ... would generate an entry in Localizable.strings which looks like this ...
/* Greeting at start of application. */
“hello” = “hello”;

Drag the .strings into Xcode and then inspect to Localize!
Hit the button “Localize” in the File Inspector on the strings file or storyboard.
You can then pick languages for which there is a localization set up for your application.
 (As per the first slide on this topic.)!
E.g., French localizers would change entry to “hello” = “bonjour”.

Stanford CS193p!
Fall 2013

Bundles
Resources are drawn from a “bundle” using the user’s locale
Inside a bundle, there will be “.lproj” directories (e.g. en.lproj, fr.lproj, etc.).
Inside these .lproj directories, there will be .strings files, images, sounds, etc.
When you get a path to a file from a bundle, it tries top-level first, then searches .lprojs
 (depending on the language the user has chosen for his system in Settings app).!

Bundles can be associated with a framework or an application!
Using NSBundle API to get a resource (e.g. an image or sound)
NSBundle *bundle = [NSBundle bundleForClass:[self class]];
NSString *path = [bundle pathForResource:@“speedlimit” ofType:@“jpg”];
bundleForClass: knows whether that class came from a framework or just with the application.

Stanford CS193p!
Fall 2013

Localization
Debugging!
Set the NSUserDefault NSShowNonLocalizedStrings to YES and a message will be logged to the
 console whenever these NSLocalizedString methods cannot find a string. !

Build Clean!
If changes you make to .strings files don’t seem to be appearing when you run … try Build Clean.!
Usually this is not necessary, but it’s something to try if things get out of sync.

Stanford CS193p!
Fall 2013

Locales
Formats!
Dates and numbers are written in different formats in different locales. !

Locale!
Locale is different from language.
The NSLocale class encapsulates the locale the user has chosen in Settings.
It knows all about date and number formats (independent of the language that is currently set).
+ (NSLocale *)currentLocale;
+ (NSLocale *)autoupdatingCurrentLocale; // watch NSCurrentLocaleDidChangeNotification
Usually you don’t need to access this directly because you’ll use a formatter which is looking at it.

Stanford CS193p!
Fall 2013

NSNumberFormatter
Lots going on here. Check out the documentation.
But we’ll look at two simple cases ...!

Displaying numbers!
Shouldn’t really use [NSString stringWithFormat:@“%g”] for user-visible floats.
Instead use this NSNumberFormatter class method ...!
+ (NSString *)localizedStringFromNumber:(NSNumber *)number
 numberStyle:(NSNumberFormatterStyle)style
Example styles: NSNumberFormatterDecimalStyle or CurrencyStyle or even SpellOutStyle!

Parsing numbers!
Don’t use intValue to parse a number typed in by the user, use ...
NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
[formatter setNumberStyle:NSNumberFormatterDecimalStyle];
NSNumber *parsedNumber = [formatter numberFromString:userInputtedString];
Note that this will return nil if a number of the proper format is not found.
That can be valuable to differentiate from the user entering “zero” for example.

Stanford CS193p!
Fall 2013

NSDateFormatter
Dates are rather complicated to display properly!
If you are presenting dates to the user, familiarize yourself with these concepts ...
Calendars. Not all locales use the Gregorian calendar that we do. NSCalendar.
Date Components, e.g., what is a “month” (calendar dependent)? NSDateComponents.
And if you have in mind something like MM/DD/YYYY, check out this method first ...
+ (NSString *)dateFormatFromTemplate:(NSString *)template
 options:(NSUInteger)options
 locale:(NSLocale *)locale;

Simple date formatting!
At least use this NSDateFormatter class method ...
+ (NSString *)localizedStringFromDate:(NSDate *)date
 dateStyle:(NSDateFormatterStyle)dateStyle
 timeStyle:(NSDateFormatterStyle)timeStyle;
Example styles: NSDateFormatterShortStyle or MediumStyle or LongStyle or FullStyle

Stanford CS193p!
Fall 2013

NSString
Searching in strings!
Do not use plain rangeOfString: if you are looking around in user-inputted strings.!
Instead, use this ...
+ (NSRange)rangeOfString:(NSString *)useEnteredSubstring
 options:(NSStringCompareOptions)options // e.g. case-insensitively
 range:(NSRange)rangeToSearchIn
 locale:(NSLocale *)locale;
... especially if you are searching case-insensitively, since this concept is locale-specific.

Stanford CS193p!
Fall 2013

UIImage
The method imageNamed: does the right thing!!
It searches inside the .lproj’s to find images.

Stanford CS193p!
Fall 2013

Demo
Photomania!
Let’s internationalize it.

Stanford CS193p!
Fall 2013

Settings
A little bit of UI for your application in the Settings application
You should use this sparingly (if at all).
It’s appropriate only for very rarely used settings or default behavior.
You don’t want to make your users ever have to go here for normal use of your application.
The settings appear in your application via NSUserDefaults.
You specify the UI and the associated defaults in a property list file.

Stanford CS193p!
Fall 2013

Settings

Choose New File... from the File menu, then pick
Settings Bundle from the Resource grouping.

Stanford CS193p!
Fall 2013

A sort of “example”
settings bundle will be

created for you. You can
edit it by clicking here.!

Check the documentation!
for all the possibilities.

It is possible to have multiple “pages” of settings.!
See documentation for details.

Settings

Stanford CS193p!
Fall 2013

The sample from the
previous slide would result in

a Settings UI like this.

Settings

Stanford CS193p!
Fall 2013

Settings

Note the en.lproj.!
Yes, settings are

localizable, but it’s not very
well supported in Xcode.

Each language has a strings file for
each Settings page!

(e.g., Root.strings is the name of the
.strings file to localize the

Root.plist page of the settings).

Stanford CS193p!
Fall 2013

Settings
Unfortunately, localization of settings is a bit of a pain
You have to find the Settings.bundle in your Finder and create .lproj directories yourself.
Each .lproj directory should contain a .strings file for each screen in your settings.

Copy and paste en.lproj to other languages!
(like fr.lproj), then edit the Root.strings!

(or other .strings files) inside for each language.

Stanford CS193p!
Fall 2013

Demo
Bouncer!
Allow setting the Elasticity from Settings.

Stanford CS193p!
Fall 2013

Coming Up
Wednesday!
Alternate Final Presentation.!
If you are using Alternate Presentation time, submit your Keynote by noon tomorrow (Tuesday).!
Submit the slides using the normal submit script (submit again with code by Sunday).!
We will have a “live demo testing” opportunity on Wednesday as well, so bring your demo device.!

Friday!
No Section.!

Sunday!
Final Project Due (by midnight).!
Don’t forget to submit your Keynote slides along with!!

Final!
A week from Thursday at 12:15pm to 3:15pm in this room.!
Presentation is required.!
Presentation time limit is 2.5 minutes (150 seconds) and must be 1280x720 aspect ratio.!
Presentation order is random (no exceptions).

